Тахогенераторы постоянного токаОсновой для создания электрических машин и трансформаторов явился открытый М. Фарадеем закон электромагнитной индукции. Начало практического применения электрических машин было положено русским академиком Б. С. Якоби, который в 1834 г . создал конструкцию электрической машины, явившуюся прототипом современного электродвигателя. Практическое применение трансформаторов началось в 1876 г ., когда русский ученый П. Н. Яблочков впервые применил трансформаторы для питания изобретенных им электрических свечей. Широкому применению электрических машин в промышленности способствовало изобретение русского инженера М. О. Доливо-Добровольского (1889) трехфазного асинхронного двигателя, отличающегося простотой конструкции и высокой надежностью. К началу ХХ в. были созданы почти все виды современных электрических машин и разработаны основы их теории. Начиная с этого времени быстрыми темпами происходит электрификация промышленности и транспорта. Электрические машины малой мощности (микромашины), применяются в системах и устройствах автоматики и вычислительной техники в качестве функциональных элементов. Все электромашинные элементы автоматики разделяются на три группы: исполнительные двигатели, электромашинные усилители и информационные машины. Исполнительные двигатели осуществляют преобразование электрического сигнала в механическое перемещение, они могут быть асинхронными, постоянного тока и шаговыми. Электромашинные усилители служат для усиления мощности электрических сигналов. Информационные машины включают в себя тахогенераторы, сельсины, магнесины и вращающиеся трансформаторы. Эти машины служат для преобразования механических величин (угла поворота, частоты вращения или ускорения) в электрический сигнал или для передачи механического перемещения на расстояние. Принцип работы Тахогенератор постоянного тока - это машина постоянного тока с независимым возбуждением или возбуждением постоянными магнитами, работающая в генераторном режиме. По конструкции он почти не отличается от машин постоянного тока. Тахогенераторы постоянного тока служат для измерения частоты вращения по значению выходного напряжения, а также для получения электрических сигналов, пропорциональных частоте вращения вала в схемах автоматического регулирования. Основными требованиями, предъявляемыми к тахогенераторам, являются: а) линейность выходной характеристики; б) большая крутизна выходной характеристики; в) малое влияние на выходную характеристику изменения температуры окружающей среды и нагрузки; г) минимум пульсаций напряжения на коллекторе. На. рис. 9.5 показаны принципиальные схемы тахогенераторов постоянного тока с электромагнитным возбуждением (а) и возбуждением постоянными магнитами (б). В случае электромагнитного возбуждения обмотку возбуждения ОВ подключают к источнику постоянного тока (рис. 9.5, а). Тахогенератор возбуждается и если его якорь привести во вращение с частотой n, то на выходе генератора появится постоянное напряжение U вых . Уравнение выходной характеристики тахогенератора имеет вид Выходная характеристика тахогенератора постоянного тока - прямая линия. Однако опыт показывает, что выходная характеристика прямолинейна только в начальной части (при малых относительных частотах вращения), а с ростом частоты вращения она становится криволинейной (рис. 9.6, а). Криволинейность характеристики усиливается при уменьшении сопротивления нагрузки R H и увеличении частоты вращения n. Это объясняется размагничивающим действием реакции якоря в тахогенераторе. Для уменьшения криволинейности выходной характеристики не следует использовать тахогенератор на его предельных частотах вращения и применять в качестве нагрузки приборы с малым внутренним сопротивлением. В реальных условиях существует падение напряжения в щеточном контакте U щ , поэтому выходная характеристика тахогенератора выходит не из начала осей координат, а из точки на оси ординат, отстоящей от начала координат на U щ = -[ U щ /(1 + r а/ R H )] ( 3 ) Это приводит к появлению у тахогенераторов постоянного тока зоны нечувствительности =±n min , В пределах которой он не создает на выходе напряжения (рис. 9.6, 6). Для уменьшения зоны нечувствительности в тахогенераторах применяют щетки с небольшим значением U щ , т. е. с малым сопротивлением (медно-графитные или серебряно-графитные). В тахогенераторах высокой точности (прецизионных) используют щетки с серебряными или золотыми напайками. Следовательно, результирующий поток машины при обоих направлениях вращения будет различным, при этом различными будут э. д. с., индуктируемые в якоре. Асимметрию выходного напряжения вычисляют как отношение разности выходных напряжений при вращении якоря с номинальной частотой в обоих направлениях к полусумме этих напряжений. В зависимости от класса точности тахогенератора скоростная амплитудная погрешность при номинальной частоте вращения составляет ±(0,05-3) %, а ошибка асимметрии равна ±(1-3)%. Источником погрешности является также непостоянство магнитного потока обмотки возбуждения Фв. При электромагнитном возбуждении тахогенератора причиной этого может быть колебание напряжения U В , подводимого к обмотке возбуждения, нагрев этой обмотки. В обоих случаях изменяется ток возбуждения I B что ведет к изменению потока Фв. Для уменьшения возможных колебаний потока Ф. магнитную систему тaxoгeнepaтора выполняют с сильным магнитным насыщением, т.е рабочую точку 1 на кривой намагничивания принимают за «коленом» насыщения магнитной системы. Из построений рис. 9.7, а видно, что изменение тока возбуждения I в на I в1 в зоне точки 1 вызывает изменение потока возбуждения на Ф в1 , значение изменений здесь намного меньше, чем в зоне точки 2, лежащей на прямолинейном участке кривой намагничивания, расположенном до «колена» насыщения ( Ф в1 в2 ). Например, при нагреве обмотки возбуждения ее сопротивление увеличивается, ток I в и поток Фв уменьшаются. Но при этом магнитное сопротивление шунтов увеличивается, что уменьшает поток Фш через шунты и увеличивает поток Фв. через полюс и якорь на величину, компенсирующую его уменьшение от изменения тока возбуждения. При снижении температуры процессы идут в обратном направлении. В итоге происходят лишь незначительные колебания потока возбуждения. Все причины, вызывающие отклонение выходной характеристики тахогенератора от прямолинейной, ведут к амплитудной погрешности. Тахогенераторы постоянного тока имеют амплитудную погрешность от 0,5 до 3%. В тахогенераторах постоянного тока возможна пульсация выходного напряжения, обусловленная рядом причин: зубчатой поверхностью сердечника якоря; неравномерностью воздушного зазора или неодинаковой магнитной проводимостью сердечника якоря по разным радиальным направлениям; вибрацией щеток и замыканием секций обмотки якоря в процессе коммутации; небольшим количеством секций в обмотке якоря из-за малых габаритных размеров машины Пульсации напряжения могут вносить помехи в работу автоматических устройств, элементом которых являются тахогенераторы. Пульсации напряжения можно ослабить за счет более качественной технологии изготовления тахогенеpaтopa с применением веерной сборки листов сердечника якоря (листы укладывают в пакет со сдвигом на однозубцовое деление), а также подключением сглаживающего фильтра на выход тахогенератора. Однако полностью избавиться от пульсаций не удается. Амплитуды пульсации выходного напряжения тахогенераторов постоянного тока составляют 0.1-3 % от среднего значения выходного напряжения. На работу тахогенератора оказывают влияние также пульсации выходного напряжения, обусловленные: 1) зубчатым строением якоря (зубцовые пульсации); 2) изменением магнитного потока за время одного оборота вследствие эллиптичности, эксцентриситета якоря или магнитной анизотропии его материала (якорные пульсации); 3) периодическим изменением числа секций в параллельных ветвях якоря; особенно при малом числе коллекторных пластин; 4) вибрацией щеток и замыканием накоротко части секций ТАХОГЕНЕРАТОРЫ постоянного тока В СХЕМАХ АВТОМАТИКИ Применение тахогенераторов постоянного тока в различных системах управления объясняется тем, что входным сигналом для большинства регуляторов в схемах автоматики является напряжение постоянного тока; тахометры с равномерными шкалами являются вольтметрами магнитоэлектрической системы и по существу измеряют напряжение постоянного тока, пропорциональное частоте вращения. В замкнутой системе регулирования тахогенераторы являются основным звеном контура обратной связи по частоте вращения. Часто считают, что тахогенератор — это безынерционное звено или (при наличии R С-фильтра для сглаживания пульсаций повышенной частоты) инерционное звено первого порядка с небольшой постоянной времени, определяемой R С-цепочкой фильтра. Более глубокие исследования, однако, показывают, что с учетом U Щ и люфтов в подвижной передаче (муфты, зубчатые пары) узел тахогенератора становится нелинейным звеном, вызывающим автоколебания системы управления. При этом наиболее вредные низкочастотные пульсации напряжения на выходе узла тахогенератора в большей степени зависят от органических недостатков применяемых передач, чем от собственно тахогенератора как электрической машины. В системе автоматического управления под тахогенератором (ТГ) принято понимать комплекс устройств или узел между валом двигателя и входом усилителя. В приводах с тахогенераторами этот узел включает в себя устройство сочленения (муфту, зубчатую передачу), собственно тахогенератор, проводку до панели управления, а иногда также выходной трансформатор, фильтр и потенциометр. На рис.9.8 в качестве примера приведена простейшая структурная схема управляемого электропривода с обратной связью по частоте вращения. Схема управления предназначена для того, чтобы обеспечить частоту вращения механизма М пропорциональной неизменному эталонному напряжению или изменять ее пропорционально напряжению программного устройства ПУ. Для этого напряжение ТГ в устройстве сравнения УС сопоставляется с напряжением источника эталонного напряжения или программного устройства и их разность подается на усилитель, где она усиливается, как правило, двумя последовательными каскадами — предварительным усилителем У и усилителем мощности УМ, к которому подключен двигатель Д. Нетрудно заметить, что чем выше коэффициент усиления по напряжению и по мощности усилителей, тем меньшими должны быть разность напряжений и мощность, отдаваемая ТГ, которые необходимо подавать на вход У, чтобы обеспечить заданную частоту вращения, и тем точнее будет Наряду с этим тахогенераторы постоянного тока имеют недостатки, ограничивающие их применение: сложность конструкции, высокую стоимость, наличие скользящего контакта между щетками и коллектором, что приводит к снижению надежности тахогенератора и к нестабильности выходной характеристики; наличие зоны нечувствительности; пульсация выходного напряжения; помехи радиоприему, для подавления которых в некоторых случаях приходится применять специальные меры. (Для подавления электромагнитных излучений применяют экранирование двигателя. В качестве экрана используют заземленный корпус двигателя. Если в подшипниковом щите со стороны коллектора имеются окна, то их закрывают металлической сеткой, соединенной с заземленным корпусом двигателя. Если корпус двигателя или его передний подшипниковый щит(со стороны коллектора) изготовлены из пластмассы, то неметаллическую часть двигателя закрывают сеткой и заземляют. Для подавления радиопомех, проникающих в электросеть, применяют симметрирование обмоток и включение фильтров. Симметрирование состоит в том, что каждую обмотку, включаемую последовательно в цепь якоря (обмотку возбуждения, обмотку добавочных полюсов и т. п.), разделяют на две равные части и присоединяют симметрично обмотке якоря, подключая к щеткам разной полярности. В качестве фильтров используют конденсаторы, включенные между каждым токонесущим проводом и заземленным корпусом двигателя. Значение емкости конденсаторов подбирают опытным путем. Конденсаторы должны быть рассчитаны на рабочее напряжение двигателя. Предпочтительнее применять проходные конденсаторы типа КБП, у которых один из зажимов металлический корпус, прикрепляемый непосредственно к статору двигателя и заземляемый вместе с ним. Часто конденсаторы фильтра располагают в коробке выводов двигателя.) Таким образом, любой вид тахогенератора имеет свои достоинства и недостатки. |
кадастровая стоимость в Брянске
оценка рыночной стоимости объекта недвижимости в Туле
Педагогика
Литература, Лингвистика
Технология
Микроэкономика, экономика предприятия, предпринимательство
Конституционное (государственное) право России
Гражданская оборона
География, Экономическая география
Теория государства и права
Социология
Гражданское право
История политических и правовых учений
Бухгалтерский учет
Маркетинг, товароведение, реклама
Биология
Техника
Политология, Политистория
Психология, Общение, Человек
Государственное регулирование, Таможня, Налоги
Экскурсии и туризм
Химия
Архитектура
Охрана природы, Экология, Природопользование
Теория систем управления
Компьютеры и периферийные устройства
Искусство
Экономическая теория, политэкономия, макроэкономика
Философия
Культурология
Транспорт
Ветеринария
Медицина
Астрономия, Авиация, Космонавтика
Сельское хозяйство
Менеджмент (Теория управления и организации)
Криминалистика и криминология
Уголовное право
Трудовое право
Радиоэлектроника
Международные экономические и валютно-кредитные отношения
Банковское дело и кредитование
Религия
Программное обеспечение
История
Материаловедение
Административное право
Военное дело
Физика
Физкультура и Спорт
Здоровье
Музыка
История отечественного государства и права
Конституционное (государственное) право зарубежных стран
История экономических учений
Право
Биржевое дело
История государства и права зарубежных стран
Историческая личность
Компьютерные сети
Программирование, Базы данных
Страховое право
Геодезия, геология
Пищевые продукты
Таможенное право
Металлургия
Ценные бумаги
Юридическая психология
Международное частное право
Международное право
Жилищное право
Экологическое право
Математика
Налоговое право
Правоохранительные органы
Экономика и Финансы
Семейное право
Компьютеры, Программирование
Разное
Гражданское процессуальное право
Астрономия
Российское предпринимательское право
Земельное право
Иностранные языки
Уголовное и уголовно-исполнительное право
Подобные работы
Приборы выдачи измерительной информации
echo "Регистрируемые приборы, называемые самописцами, устанавливают в тех случаях, когда необходимо фиксировать изменение измеряемых величин во времени. Диаграммные записи наглядны; при правильном вы
Тахогенераторы постоянного тока
echo "Основой для создания электрических машин и трансформаторов явился открытый М. Фарадеем закон электромагнитной индукции. Начало практического применения электрических машин было положено русским
Исполнительные и логические устройства
echo "Автоматика, отрасль науки и техники, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; в узком смысле - совокупность методов и техн
Устройства защиты громкоговорителей
echo "Постоянное напряжение "; echo ''; echo " на выходе УМЗЧ, при котором срабатывает устройство защиты , определяется напряжением стабилизации "; echo ''; echo " стабилитрона VD 7 и связано с ним со
Теории электрической связи: Расчет приемника, оптимальная фильтрация, эффективное кодирование
echo "Предельно допустимая помехоустойчивость называется потенциальной. Сравнение потенциальной и реальной помехоустойчивости позволяет дать оценку качества приема данного устройства и найти еще не и
Технология изготовления печатных плат
echo "Выпуск этих элементов в больших количествах и высокого качества – одно из основных требований вычислительного машиностроения. Массовое производство стандартных блоков с использованием новых эле
Промышленное применение лазеров
echo "Лазерные системы делятся на три основные группы: твердотельные лазеры, газовые, среди которых особое место занимает CO 2 - лазер; и полупроводниковые лазеры. Некоторое время назад появились так
Многофункциональное арифметико-логическое устройство
echo "Особое значение ЭВМ состоит в том, что впервые с их появлением человек получил орудие для автоматизации процессов обработки информации. Во многих случаях ЭВМ позволяют существенно повысить эффек