Экологические проблемы энергетики

Объекты энергетики, как и многие предприятия других отраслей промышленности, представляют собой источники неизбежного, потенциального, до настоящего времени практически количественно не учитываемого риска для населения и окружающей среды.

Энергетические объекты (топливно-энергетический комплекс вообще и объекты энергетики в частности) по степени влияния на окружающую среду принадле жат к числу наиболее интенсивно воздействующих на биосферу.

Отрицательные последствия воздействия энергети ки на окружающую среду следует ограничивать не которым минимальным уровнем, например социаль но приемлемым допустимым уровнем.

Должны рабо тать экономические механизмы, реализующие компромисс между качеством среды обитания и социаль но-экономическими условиями жизни населения.

Аналогичный круг вопросов следует рассматривать при формулировании концепции экологической безопасности объектов теплоэнергетики: учет теплового и химического воздействия на окружающую среду, вли яние водоемов-охладителей и т. п. Кроме того, для крупных ТЭС на твердом топливе (уголь, сланцы) воз никают проблемы надежной и безопасной эксплуатации золоотвалов - сложных и ответственных грун товых гидросооружений.

Энергетика - основной движущий фактор разви тия всех отраслей промышленности, транспорта, ком мунального и сельского хозяйства, база повышения производительности труда и благосостояния населе ния. У нее наиболее высокие темпы развития и масш табы производства. Доля участия энергетических пред приятий в загрязнении окружающей среды продук тами сгорания органических видов топлива, содержа щих вредные примеси, а также тепловыми отходами весьма значительна [2]. В настоящей работе рассмотрено влияние на окружающую среду разных видов энергетики (теплоэнергетика, гидроэнергетика, ядерная энергетика), способы снижения выбросов и загрязнений от энергетических объектов, а также приведена характеристика нетрадиционных методов получения энергии (ветроэнергетика, солнечная энергия, энергия термальных вод). 1. Экологические проблемы теплоэнергетики Воздействие тепловых электростанций на окружающую среду во многом зависит от вида сжигаемого топлива [1]. Твердое топливо . При сжигании твердого топлива в атмосферу поступают летучая зола с частицами не догоревшего топлива, сернистый и серный ангидри ды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты непол ного сгорания топлива.

Летучая зола в некоторых слу чаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антра цитов в незначительных количествах содержится мы шьяк, а в золе Экибастузского и некоторых других месторождений — свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна — сво бодный оксид кальция. Уголь - самое распространенное ископаемое топ ливо на нашей планете.

Специалисты считают, что его запасов хватит на 500 лет. Кроме того, уголь рас пространен по всему миру более равномерно и он бо лее экономичен, чем нефть. Из угля можно получить синтетическое жидкое топливо. Метод получения горючего путем переработ ки угля известен давно.

Однако слишком высокой была себестоимость такой продукции.

Процесс про исходит при высоком давлении. У этого топлива есть одно неоспоримое преимущество — у него выше ок тановое число. Это означает, что экологически оно будет более чистым. Торф. При энергетическом использовании торфа имеет место ряд отрицательных последствий для ок ружающей среды, возникающих в результате добычи торфа в широких масштабах. К ним, в частности, от носятся нарушение режима водных систем, изменение ландшафта и почвенного покрова в местах торфодобы чи, ухудшение качества местных источников пресной воды и загрязнение воздушного бассейна, резкое ухуд шение условий существования животных.

Значитель ные экологические трудности возникают и в связи с необходимостью перевозки и хранения торфа.

Жидкое топливо . При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух по ступают: сернистый и серный ангидриды, оксиды азо та, соединения ванадия, солей натрия, а также веще ства, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо более «гигие ничное». При этом полностью отпадает проблема золо отвалов , которые занимают значительные территории, исключают их полезное использование и являются ис точником постоянных загрязнений атмосферы в райо не станции из-за уноса части золы с ветрами. В продук тах сгорания жидких видов топлива отсутствует лету чая зола.

Природный газ. При сжигании природного газа су щественным загрязнителем атмосферы являются ок сиды азота.

Однако выброс оксидов азота при сжигании на ТЭС природного газа в среднем на 20% ниже, чем при сжигании угля. Это объясняется не свойства ми самого топлива, а особенностями процессов сжи гания.

Коэффициент избытка воздуха при сжигании угля ниже, чем при сжигании природного газа. Та ким образом, природный газ является наиболее экологически чистым видом энергетического топлива и по выделению оксидов азота в процессе горения.

Комплексное влияние предприятий теплоэнергетики на биосферу в целом проиллюстрировано в табл. 1. Таким образом, в качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепро дукты, природный газ и, реже, древесину и торф. Основными компонентами горючих материалов являют ся углерод, водород и кислород, в меньших количе ствах содержится сера и азот, присутствуют также сле ды металлов и их соединений (чаще всего оксиды и суль фиды). В теплоэнергетике источником массированных атмос ферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установ ки паросилового хозяйства, т. е. любые предприятия, работа которых связана со сжиганием топлива . Таблица 1 Комплексное влияние предприятий теплоэнергетики на биосферу

Технологический процесс Влияние на элементы среды и живые системы Примеры цепных реакций в биосфере
воздух почвы и грунт воды Экосистемы и человек
1 2 3 4 5 6
Добыча топлива: - жидкое (нефть) и в виде газа Углеводородное загрязнение при испарениях и утечках Повреждение или уничтожение почв при разведке и добыче топлива, передвижениях транспорта и т.п.; загрязнение нефтью, техническими химикатами, металлолом и др. отходами Загрязнение нефтью в результате утечек, особенно при авариях и добычах со дна водоемов, загрязнение технологическими химреагентами и др. отходами; Разрушение водоносных структур в грунтах, откачка подземных вод, их сброс в водоемы Разрушение и повреждение экосистем в местах добычи и при обустройстве месторождений (дороги, ЛЭП, водопроводы и т.п.), загрязнения при утечках и авариях. Загрязнение почв, загрязнение вод нефтью и химреагентами , снижение рыбопродуктивности , потеря потребительских или вкусовых свойств воды и продуктов промысла
-твердое: угли, сланцы торф и т.п. Пыль при взрывных и других работах Разрушение почвы и грунтов при добыче открытыми методами (карьеры), просадки рельефа, разрушение грунтов при шахтных работах Сильное нарушение водоносных структур, откачка и сброс в водоемы шахтных, часто высокоминирали-зированных , желе-зистых и других вод Разрушение экосистем или их элементов, особенно при открытых способах добычи, снижение продуктивности, воздействие на человека через загрязненные воздух, воды и пищу.

Высокая степень заболеваемости, травматизма и смертности при шахтных способах добычи

1 2 3 4 5 6
Транспортировка топлива Загрязнение при испарениии жидкого топлива, потере газа, нефти, пылью от твердого топлива Загрязнение при утечках, авариях, особенно нефтью Загрязнение нефтью в результате потерь и при авариях В основном через загрязнение вод
Работа электростанций на твердом топливе Основные поставщики углекислого газа, оксидов серы и азота, продуктов для кислых осадков, аэрозолей, сажи, загрязнение радиоактивными веществами, тяжелыми металлами Разрушение и сильное загрязнение почв вблизи предприятий (зоны отчуждения), загрязнения тяжелыми металлами, радиоактивными веществами, кислыми осадками, отчуждение земель под землеотвалы , другие отходы Тепловое загрязнение в результате сбросов подогретых вод, химическое загрязнение через кислые осадки и сухое осаждение из атмосферы, вымывание ядовитых веществ из почв и грунтов Основной агент разрушения и гибели экосистем, особенно озер и хвойных лесов (обеднение видового состава, снижение продуктивности, повреждение корней). На человека через загрязнение воздуха, воды, продуктов питания.

Разрушение природы, строений, памятников.

Загрязнение воздуха продуктами горения ® кислые осадки ® гибель лесов и экосистем озер.

Тепловое загрязнение вод ® дефицит кислорода ® цветение вод ® усиление дефицита кислорода ® превращение водных систем в болотные

Работа электростанций на жидком топливе и газе То же, но в значительно меньших масштабах То же, но в значительно меньших масштабах Тепловое загрязнение, как для твердого топлива, остальное в значительно меньших масштабах То же, но в значительно меньших масштабах
Наряду с газообразными выбросами теплоэнергети ка производит огромные массы твердых отходов; к ним относятся зола и шлаки.

Отходы углеобогатительных фабрик содержат 55- 60% SiO 2 , 22-26% А l 2 О 3 , 5-12% Fe 2 O 3 , 0,5-1% CaO , 4- 4,5% К 2 О и N а 2 О и до 5% С. Они поступают в отвалы, которые пылят, дымят и резко ухудшают состояние атмосферы и прилегающих территорий [1]. Жизнь на Земле возникла в условиях восстанови тельной атмосферы и только значительно позже, спус тя примерно 2 млрд лет, биосфера постепенно преобра зовала восстановительную атмосферу в окислительную. При этом живое вещество предварительно вывело из атмосферы различные вещества, в частности, углекис лый газ, образовав огромные залежи известняков и дру гих углеродосодержащих соединений.

Сейчас наша техногенная цивилизация сформирова ла мощный поток восстановительных газов, в первую очередь вследствие сжигания ископаемого топлива в целях получения энергии. За 20 лет, с 1970 по 1990 год, в мире было сожжено 450 млрд баррелей нефти, 90 млрд т угля, 11 трлн м 3 газа (табл. 2 ). Таблица 2 Выбросы в атмосферу электростанцией мощностью 1000 МВт в год (в тоннах)

Топливо Выбросы
углеводороды СО NO x SO 2 частицы
Уголь 400 2000 27 000 110 000 3 000
Нефть 470 700 25 000 37 000 1 200
Природный газ 34 20 000 20,4 500
Основную часть выброса занимает углекислый газ - порядка 1 млн т в пересчете на углерод 1 Мт . Со сточными водами тепловой электростанции ежегодно уда ляется 66 т органики, 82 т серной кислоты, 26 т хло ридов, 41 т фосфатов и почти 500 т взвешенных час тиц. Зола электростанций часто содержит повышенные концентрации тяжелых, редко земельных и ра диоактивных веществ. Для электростанции, работающей на угле, требует ся 3,6 млн т угля, 150 м 3 воды и около 30 млрд м 3 воздуха ежегодно. В приведенных цифрах не учтены нарушения окружающей среды, связанные с добычей и транспортировкой угля. Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие вполне можно сравнить с действием вулкана. Но если последний обычно выбрасывает продукты вулканизма в больших количества разово, то электростанция дела ет это постоянно. За десятки тысячелетий вулканичес кая деятельность не смогла сколько-нибудь заметно по влиять на состав атмосферы, а хозяйственная деятельность человека за какие-то 100-200 лет обусловила та кие изменения, причем в основном за счет сжигания ис копаемого топлива и выбросов парниковых газов раз рушенными и деформированными экосистемами.

Коэффициент полезного действия энергетических ус тановок пока невелик и составляет 30-40%, большая часть топлива сжигается впустую.

Полученная энергия тем или иным способом используется и превращается, в конечном счете, в тепловую, т. е. помимо химическо го в биосферу поступает тепловое загрязнение [2]. Загрязнение и отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой — региональные и локальные. Так же обстоит дело и в других отраслях хозяйства, но все же энерге тика и сжигание ископаемого топлива остаются источ ником основных глобальных загрязнителей. Они посту пают в атмосферу, и за счет их накопления изменяется концентрация малых газовых составляющих атмосфе ры, в том числе парниковых газов. В атмосфере появи лись газы, которые ранее в ней практически отсут ствовали - хлорфторуглероды . Это глобальные заг рязнители, имеющие высокий парниковый эффект и в то же время участвующие в разрушении озонового экрана стратосферы. Таким образом, следует отметить, что на современ ном этапе тепловые электростанции выбрасывают в ат мосферу около 20% от общего количества всех вредных отходов промышленности. Они существенно влияют на окружающую среду района их расположения и на со стояние биосферы в целом.

Наиболее вредны конденса ционные электрические станции, работающие на низ косортных видах топлива. Так, при сжигании на стан ции за 1 час 1060 т донецкого угля из топок котлов уда ляется 34,5 т шлака, из бункеров электрофильтров, очищающих газы на 99% — 193,5 т золы, а через тру бы в атмосферу выбрасывается 10 млн м 3 дымовых га зов. Эти газы, помимо азота и остатков кислорода, со держат 2350 т диоксида углерода, 251 т паров воды, 34 т диоксида серы, 9,34 т оксидов азота (в пересчете на ди оксид) и 2 т летучей золы, не «пойманной» электро фильтрами.

Сточные воды ТЭС и ливневые стоки с их территорий, загрязненные отходами технологических циклов энер гоустановок и содержащие ванадий, никель, фтор, фенолы и нефтепродукты, при сбросе в водоемы могут оказать влияние на качество воды, водные организмы.

Изменение химического состава тех или иных веществ приводит к нарушению установившихся в водоеме ус ловий обитания и сказывается на видовом составе и чис ленности водных организмов и бактерий и в конечном счете может привести к нарушениям процессов самоочищения водоемов от загрязнений и к ухудшению их санитарного состояния.

Представляет опасность и так называемое тепловое загрязнение водоемов с многообразными нарушения ми их состояния. ТЭС производят энергию при помо щи турбин, приводимых в движение нагретым паром. При работе турбин необходимо охлаждать водой от работанный пар, поэтому от энергетической станции непрерывно отходит поток воды, подогретой обычно на 8-12 °С и сбрасываемой в водоем.

Крупные ТЭС нуждаются в больших объемах воды. Они сбрасыва ют в подогретом состоянии 80-90 м 3 /с воды. Это означает, что в водоем непрерывно поступает мощный поток теплой воды примерно такого масштаба, как река Москва. Зона подогрева, образующаяся в месте впадения теплой «реки», представляет собой своеобразный уча сток водоема, в котором температура максимальна в точке водосброса и уменьшается по мере удаления от нее. Зоны подогрева крупных ТЭС занимают пло щадь в несколько десятков квадратных километров. Зимой в зоне подогрева образуются полыньи (в се верных и средних широтах). В летние месяцы тем пературы в зонах подогрева зависят от естественной температуры забираемой воды. Если в водоеме тем пература воды 20 °С, то в зоне подогрева она может достигнуть 28-32°С. В результате повышения температур в водоеме и нарушения их естественного гидротермического ре жима интенсифицируются процессы «цветения» воды, уменьшается способность газов растворяться в воде, меняются физические свойства воды, ускоряются все химические и биологические процессы, протекающие в ней, и т. д. В зоне подогрева снижается прозрач ность воды, увеличивается рН , увеличивается скорость разложения легко окисляющихся веществ.

Скорость фотосинтеза в такой воде заметно понижается. 2. Экологические проблемы гидроэнергетики Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами - их непрерывная возобновляемость . Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии.

Поэтому сооружению ГЭС, несмотря на значи тельные удельные капиталовложения на 1 кВт уста новленной мощности и продолжительные сроки стро ительства, придавалось и придаётся большое значе ние, особенно когда это связано с размещением элек троёмких производств [1]. Гидроэлектростанция — это комплекс сооружений и оборудования, посредством которых энергия пото ка воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концент рацию потока воды и создание напора, и энергетичес кого оборудования, преобразующего энергию движу щейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энерге тическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнин ных водохранилищ.

Считается, что в перспективе мировое производство энергии ГЭС не будет превы шать 5% от общей. Одной из важнейших причин уменьшения доли энер гии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросоору жений на окружающую среду (табл. 3). По данным разных исследований , одним из важнейших воздействий гидроэнер гетики на окружающую среду является отчуждение значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет ис пользования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн га земель. На их месте уничтоже ны естественные экосистемы.

Значительные площади земель вблизи водохрани лищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных усло виях подтопленные земли могут составлять 10% и бо лее от затопленных.

Уничтожение земель и свойствен ных им экосистем происходит также в результате их разрушения водой (абразии) при формировании бере говой линии.

Абразионные процессы обычно продолжа ются десятилетиями, имеют следствием переработку больших масс почвогрунтов , загрязнение вод, заиление водохранилищ. Таким образом, со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видо вого состава гидробионтов . В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и дру гие процессы, обусловливаемые тепловым загрязнени ем.

Последнее, совместно с накоплением биогенных ве ществ, создает условия для зарастания водоемов и ин тенсивного развития водорослей, в том числе и ядови тых сине-зеленых. По этим причинам, а также вслед ствие медленной обновляемости вод резко снижается их способность к самоочищению.

Ухудшение качества воды ведет к гибели многих ее обитателей.

Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами.

Снижаются вку совые качества обитателей водной среды.

Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС. В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в тран зитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактив ные элементы и многие ядохимикаты с длительным периодом жизни.

Продукты аккумуляции делают про блематичной возможность использования территорий, занимаемых водохранилищами, после их ликвидации.

Водохранилища оказывают заметное влияние на ат мосферные процессы.

Например, в засушливых ( аридных ) районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз.

Таблица 3 Комплексное воздействие предприятий гидроэнергетики на окружающую среду

Технологический процесс Влияние на элементы среды и живые системы Примеры цепных реакций в биосфере
воздух почвы и грунт воды Экосистемы и человек
1 2 3 4 5 6
Строительство ГЭС Аэрозольное загрязнение продуктами разрушения почв, стройматериалами (особенно цементом); химическое – в небольших объемах в основном от работы техники, предприятий Разрушение почв и грунтов на стройплощадках, подъездных путях, хозяйственных объектах и т.п.; перемещение больших масс грунтов, особенно при строительстве плотин и обустройстве водохранилищ Некоторое нарушение режима и загрязнение в местах строительства (обводные каналы и т.п.) Частичное разрушение экосистем и их элементов (растительности, почв), фактор беспокойства для животных, интенсивный промысел и т.п.

Влияние на человека в основном через изменение среды и социальные факторы.

Текущая вода ® водохранилище ® накопление химических веществ плюс тепловое загрязнение ® зарастание водоема (цветение) ® обогащение органикой ® обескислороживание ® порча воды ® болезни рыб ® потеря пищевых или вкусовых свойств воды и продуктов промысла.
1 2 3 4 5 6
Работа ГЭС Повышение влажности, понижение температур, туманы, местные ветры, часто неприятный запах от гниения органических остатков То же, что и при затоплении, плюс многолетнее разрушение береговой линии (абразия), формирование новых типов почв в прибрежной зоне Загрязнение в результате стоков с водосбросов и разложения больших масс органики, почв, растительных остатков, древесины и т.п., образование фенолов, усиленное прогревание мелководий, цветение, потеря кислорода, накопление тяжелых металлов, ила, радиоактивных и другиих веществ, порча воды Формирование новых экосистем ( в основном луговых и болотных) в зоне подтопления, зарастание вод.

Цветение, нарушение миграций рыб, смена более ценных видов рыб менее ценными, заболевания рыб.

Потеря вкусовых качеств рыб.

Увеличение вероятности заболеваний людей при купании.

Затопление водохранилищ Дополнительное испарение с чаши водохранилищ Уход под воду плодородных пойменных земель (затопление), подъем грунтовых вод в прибрежной зоне (подтопление, заболачивание). В горных условиях такие явления выражены в меньшей степени. Смена текущих вод на застойные, неизбежное загрязнение водохранилищ быстрорастворимыми или взмучиваемыми веществами при заполнении чаши водохранилищ и формировании берегов. Полное уничтожение сухопутных экосистем (сведение лесов или их гибель от подтопления, часто оставление всей биомассы в зоне затопления), смена прибрежных экосистем.

Неизбежное переселение людей из зоны затопления, социальные издержки.

Давление водных масс на ложе водохранилищ ® интенсификация сейсмических явлений
С повышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Раз личие тепловых балансов водохранилищ и прилегаю щей суши обусловливает формирование местных вет ров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положитель ную), изменение погоды. В ряде случаев в зоне водохра нилищ приходится менять направление сельского хо зяйства.

Например в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не успевают вызревать, повышается заболеваемость расте ний, ухудшается качество продукции.

Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади.

Однако в сейсмоопасных горных районах водохранилища могут провоцировать земле трясения.

Увеличивается вероятность оползневых яв лений и вероятность катастроф в результате возможно го разрушения плотин. Так, в 1960 г. в Индии (штат Гунжарат ) в результате прорыва плотины вода унесла 15 тысяч жизней людей. В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. На пример водохранилище ГЭС (или система водохрани лищ в случае каскада ГЭС) может существовать десят ки и сотни лет, при этом на месте естественного водо тока возникает техногенный объект с искусственным регулированием природных процессов - природнотехническая система (ПТС). В данном случае задача сводится к формированию такой ПТС, которая обес печивала бы надежное и экологически безопасное фор мирование комплекса. При этом соотношение между основными подсистемами ПТС (техногенным объек том и природной средой) может быть существенно различным в зависимости от выбранных приоритетов - технических, экологических, социально-экономических и др., а принцип экологической безо пасности может формулироваться, например, как под держание некоторого устойчивого состояния создаваемой ПТС. Эффективным способом уменьшения затопления тер риторий является увеличение количества ГЭС в каска де с уменьшением на каждой ступени напора и, следо вательно, зеркала водохранилищ.

Несмотря на сниже ние энергетических показателей и уменьшение регули рующих возможностей возрастания стоимости, низконапорные гидроузлы, обеспечивающие минимальные затопления земель, лежат в основе всех современных разработок. Еще одна экологическая проблема гидроэнергетики связана с оценкой качества водной среды.

Имеющее место загрязнение воды вызвано не технологическими процессами производства электроэнергии на ГЭС (объе мы загрязнений, поступающие со сточными водами ГЭС, составляют ничтожно малую долю в общей массе загрязнений хозяйственного комплекса), а низкое ка чество санитарно-технических работ при создании во дохранилищ и сброс неочищенных стоков в водные объекты. В водохранилищах задерживается большая часть пи тательных веществ, приносимых реками. В теплую погоду водоросли способны массами размножаться в поверхностных слоях обогащенного питательными веще ствами, или эвтрофного , водохранилища. В ходе фотосинтеза водоросли потребляют питательные вещества из водохранилища и производят большое количество кислорода.

Отмершие водоросли придают воде непри ятный запах и вкус, покрывают толстым слоем дно и препятствуют отдыху людей на берегах водохранилищ.

Массовое размножение, «цветение» водорослей в неглу боких заболоченных водохранилищах стран СНГ дела ет их воду непригодной ни для промышленного исполь зования, ни для хозяйственных нужд. В первые годы после заполнения водохранилища в нем появляется много разложившейся растительности, а «новый» грунт может резко снизить уровень кисло рода в воде.

Гниение органических веществ может при вести к выделению огромного количества парниковых газов — метана и двуокиси углерода.

Водохранилища часто «созревают» десятилетиями или дольше, а в тропиках этот процесс длится столетиями — пока разложится большая часть всей органики.

Рассматривая воздействие ГЭС на окружающую сре ду, следует все же отметить жизнесберегающую фун кцию ГЭС. Так, выработка каждого млрд кВтч элект роэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год. 3. Проблемы ядерной энергетики Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. До статочно отметить, что 0,5 кг ядерного топлива по зволяет получать столько же энергии, сколько сжи гание 1000 т каменного угля.

Известно, что процессы, лежащие в основе получе ния энергии на АЭС — реакции деления атомных ядер — гораздо более опасны, чем, например, процессы горе ния.

Именно поэтому ядерная энергетика впервые в ис тории развития промышленности при получении энер гии реализует принцип максимальной безопасности при наибольшей возможной производительности.

Многолетний опыт эксплуатации АЭС во всех стра нах показывает, что они не оказывают заметного вли яния на окружающую среду. К 1998 г. среднее время эксплуатации АЭС составило 20 лет.

Надежность, бе зопасность и экономическая эффективность атомных электростанций опирается не только на жесткую рег ламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на ок ружающую среду. В табл. 4 представлены сравнительные данные АЭС и ТЭС по расходу топлива и загрязнению окружающей среды за год при мощности по 1000 МВт . Таблица 4 Расход топлива и загрязнение окружающей среды

Факторы воздействия на среду ТЭС АЭС
Топливо 3,5 млн. т. угля 1,5 т урана или 1000 т. урановой руды
Отходы: Углекислый газ Сернистый ангидрид и др. соед . Зола Радиоактивные 10 млн. т. 400 тыс. т. 100 тыс. т. — — — — 2 т.
При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем, они в 2-4 раза меньше, чем от ТЭС одинаковой мощности. К маю 1986 г. 400 энергоблоков, работавших в мире и дававших более 17% электроэнергии, увеличили при родный фон радиоактивности не более чем на 0,02%. До Чернобыльской катастрофы в нашей стране ника кая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то не по радиационным при чинам, погибло 17 человек. После 1986 г. главную экологическую опасность АЭС стали связывать с возмож ностью аварии. Хотя вероятность их на современных АЭС и невелика, но она не исключается. К наиболее крупным авариям такого плана относится авария, случившаяся на четвертом блоке Чернобыльской АЭС. По различным данным, суммарный выброс продук тов деления от содержащихся в реакторе составил от 3,5% (63 кг) до 28% (50 т). Для сравнения необходимо отметить, что бомба, сброшенная на Хиросиму, дала только 740 г радиоактивного вещества. В результате аварии на Чернобыльской АЭС радио активному загрязнению подверглась территория в ра диусе более 2 тыс. км, охватившая более 20 государств. В пределах бывшего СССР пострадало 11 областей, где проживает 17 млн человек. Общая площадь загрязнен ных территорий превышает 8 млн га, или 80 0000 км 2 . В России наиболее значительно пострадали Брянская, Калужская, Тульская и Орловская области. Пятна заг рязнений имеются в Белгородской, Рязанской, Смолен ской, Ленинградской и других областях. В результате аварии погиб 31 человек и более 200 человек получили дозу радиации, приведшую к лучевой болезни. 115 тыс. человек было эвакуировано из наиболее опасной (30-километровой) зоны сразу после аварии. Число жертв и количество эвакуированных жителей увеличивается, расширяется зона загрязнения в результате перемеще ния радиоактивных веществ ветром, при пожарах, с транспортом и т. п.

Последствия аварии будут сказы ваться на жизни нескольких поколений. После Чернобыльской аварии во многих государствах по требованию общественности были временно прекра щены или свернуты программы строительства АЭС, однако атомная энергетика продолжала развиваться в 32 странах.

Сейчас дискуссии по вопросам приемлемости или неприемлемости ядерной энергетики пошли на спад, стало понятно, что мир не может вновь погрузиться во тьму или смириться с крайне опасным воздействи ем на атмосферу двуокиси углерода и прочих вред ных для человека продуктов горения органического топлива. Уже в течение 1990 года 10 новых АЭС были подключены к электрическим сетям.

Строительство АЭС не останавливается: по состоянию на конец 1999 г. в мире в эксплуатации находилось 436 энер гоблоков АЭС по сравнению с 434, зарегистрирован ными в 1998 г. Общая электрическая мощность работающих в мире энергоблоков около 335 ГВт (1 ГВт = 1000 МВт = 10 9 Вт). Действующие атомные электро станции обеспечивают покрытие 7% мировых потреб ностей в энергии, а их доля в мировом производстве электрической энергии составляет 17%. Только в За падной Европе атомные электростанции вырабатыва ют в среднем около 50% всей электроэнергии. Если сейчас заменить все действующие в мире атом ные электростанции на тепловые, мировой экономике, всей нашей планете и каждому человеку в от дельности был бы нанесен непоправимый ущерб. Этот вывод основан на том факте, что получение энергии на АЭС одновременно предотвращает ежегодный выброс в атмосферу Земли до 2300 млн т двуокиси углерода, 80 млн т диоксида серы и 35 млн т окси дов азота за счет уменьшения количества сжигаемого органического топлива на тепловых электростан циях. Кроме того, сгорая, органическое топливо (уголь, нефть) выбрасывает в атмосферу огромное ко личество радиоактивных веществ, содержащих, в ос новном, изотопы радия с периодом полураспада око ло 1600 лет! Извлечь все эти опасные вещества из атмосферы и обезопасить от их воздействия население Земли в этом случае не представлялось бы воз можным. Вот лишь один конкретный пример. Зак рытие в Швеции атомной станции Барсебек-1 привело к тому, что Швеция впервые за последние 30 лет стала импортировать электроэнергию из Дании. Эко логические последствия этого таковы: на угольных электростанциях Дании было сожжено дополнитель но почти 350 тыс. т угля из России и Польши, что привело к росту выбросов двуокиси углерода на 4 млн т (!) в год и значительному увеличению коли чества выпадающих кислотных дождей во всей юж ной части Швеции.

Строительство АЭС осуществляют на расстоянии 30-35 км от крупных городов.

Участок должен хорошо про ветриваться, во время паводка не затопляться.

Вокруг АЭС предусматривают место для санитарно-защитной зоны, в которой запрещается проживание населения. В РФ в настоящее время эксплуатируется 29 энергоблоков на девяти АЭС общей установленной электрической мощностью 21,24 ГВт . В 1995-1998 гг. на АЭС в России вырабатывалось более 13% всего производства электроэнергии в стране, сейчас - 14,4%. По суммарной установленной мощности АЭС Россия занимает пятое место после США, Франции, Японии и Германии. В настоящее время более 100 млрд кВт*ч , вырабатываемые ядерными энергоблоками страны, вно сят значительный и необходимый вклад в энергообес печение ее европейской части — 22% всей производимой электроэнергии.

Производимая на АЭС электроэнергия более чем на 30% дешевле, чем на тепло вых электростанциях, использующих органическое топливо.

Безопасность действующих АЭС является одной из главнейших задач российской атомной энергетики. Все планы строительства, реконструкции и модернизации атомных электростанций России реализуются только с учетом современных требований и нормативов. Иссле дование состояния основного оборудования действую щих российских АЭС показало, что продление сроков его службы, по крайней мере, еще на 5-10 лет вполне возможно.

Причем, благодаря проведению соответству ющего комплекса работ по каждому энергоблоку, с со хранением высокого уровня безопасности. Для обеспечения дальнейшего развития атомной энер гетики в России в 1998 г. принята «Программа разви тия атомной энергетики Российской Федерации на 1998-2000 гг. и на период до 2010 г.». В ней отмечено, что в 1999 г. АЭС России выработали на 16% больше энергии, чем в 1998 г. Для производства этого количества энергии на ТЭС потре бовалось бы 36 млрд м 3 газа стоимостью 2,5 млрд долл в экспортных ценах. На 90% рост потребления энергии в стране был обеспечен за счет ее выработки на атомных электростанциях.

Оценивая перспективы развития мировой атомной энергетики, большинство авторитетных международ ных организаций, связанных с исследованием глобальных топливно-энергетических проблем, предполагает, что после 2010-2020 гг. в мире вновь возрастет потребность в широком строительстве АЭС. По реалистичес кому варианту, прогнозируется, что в середине XXI в. около 50 стран будут располагать атомной энергетикой. При этом общая установленная электрическая мощ ность АЭС в мире к 2020 г. возрастет почти вдвое — до стигнет 570 ГВт , а к 2050 — 1100 ГВт . 4. Краткая экологическая характеристика нетрадиционных методов получения энергии Как сказано выше, в настоящее время основные энергоресурсы, за счет которых обеспечиваются энергетические потребности человечества, это: органичес кое топливо, вода, энергия деления атомного ядра.

Одновременно с решением задач уменьшения воз действия на среду традиционных методов получения энергии наука и производство изучают возможности получения энергии за счет альтернативных (нетради ционных) ресурсов, таких, как энергия ветра, солн ца, геотермальная и энергия волн и других источников, которые относятся к неисчерпаемым и экологи чески чистым. Ниже будут приведены некоторые имеющиеся сведения о влиянии нетрадиционных методов получения энергии на окружающую среду.

Ветроэнергетика Является наиболее древним источником энергии. В течение нескольких столетий ветер использовал ся на мельницах, пилорамах, в системах подачи воды к местам потребления и т. п. Они же исполь зовались и для получения электрической энергии, хотя доля ветра в этом отношении оставалась край не незначительной.

Интерес к использованию ветра для получения электроэнергии оживился в последние годы. К на стоящему времени испытаны ветродвигатели различ ной мощности, вплоть до гигантских.

Сделаны выводы, что в районах с интенсивным движением воз духа ветроустановки вполне могут обеспечивать энер гией местные потребности.

Оправдано использование ветротурбин для обслуживания отдельных объектов (жилых домов, неэнергоемких производств и т. п.). Вместе с тем, стало очевидным, что гигантские ветроустановки пока не оправдывают себя вследствие дороговизны сооружений, сильных вибраций, шумов, быстрого выхода из строя. Более экономичны комп лексы из небольших ветротурбин , объединяемых в одну систему.

Первая в нашей стране ветровая электростанция мощностью 8 кВт была сооружена в 1929-1930 гг. под Курском по проекту инженеров А.Г. Уфимцева и В.П. Ветчинкина. Через год в Крыму была построена более крупная ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Она ус пешно проработала до 1942 г., но во время войны была разрушена.

Значительные успехи в создании ВЭС были дос тигнуты за рубежом. Во многих странах Западной Европы построено довольно много установок по 100- 200 кВт. Во Франции, Дании и в некоторых других странах были введены в строй ВЭС с номинальными мощностями свыше 1 МВт . Одна из наиболее известных установок этого клас са « Гровиан » была создана в Германии, ее номи нальная мощность — 3 МВт . Но самое широкое раз витие ветроэнергетика получила в США. Еще в 1941 г. там была построена первая ВЭС мощностью 1250 кВт, а сейчас общая мощность всех ВЭС в этой стране достигает 1300 МВт , причем среди них есть гиганты с мощностью до 4 МВт . Сегодня в некото рых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн кВт ВЭУ, в Дании ВЭУ производят около 3% потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии. При том нет никаких расходов на утилизацию отработанного топлива и нет загрязнения окружающей среды.

Однако ветровые источники энергии оказывают специфическое воздействие на окружающую среду, требу ют огромных площадей.

Известно, что к работающему ветряку близко подхо дить нежелательно, и притом с любой стороны, так как при изменениях направления ветра направление оси ротора тоже изменяется.

Ветроагрегаты близко друг к другу ставить нельзя, так как они могут создавать взаимные помехи в рабо те, «отнимая ветер» один у другого.

Минимальное рас стояние между ветряками должно быть не менее их ут роенной высоты.

Работающие ветродвигатели создают значительный шум, генерируют неслышимые ухом, но вредно действующие на людей инфразвуковые колебания с частотами ниже 16 Гц.

Ветряки распугивают птиц и зверей, нарушая их естественный образ жизни, а при большом их скопле нии на одной площадке могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Во многих странах, в том числе в Ирландии, Англии и других, жители неоднок ратно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означает везде. Было выдвинуто предложение о размещении сис тем ветряков в открытом море. Так, в Швеции разра ботан проект, согласно которому предполагается в Бал тийском море недалеко от берега установить 300 вет ряков. На их башнях высотой 90 м будут вращаться двухлопастные пропеллеры с размахом лопастей 80 м.

Стоимость строительства только первой сотни таких гигантов потребуется более 1 млрд долл , а вся систе ма, на строительство которой уйдет минимум 20 лет, обеспечит производство всего 2% электроэнергии от уровня потребления в Швеции в настоящее время. Это пока проектируется, но в настоящее время в Швеции начато строительство одной ВЭС мощностью 200 кВт на расстоянии 250 м от берега, которая будет переда вать энергию на землю по подводному кабелю. Ана логичные проекты были и у нас: предлагали устанав ливать ветряки и на акватории Финского залива, и на Арабатской стрелке в Крыму.

Помимо сложности и дороговизны подобных проектов, их реализация создала бы серьезные помехи судоходству, рыболов ству, а также оказала бы все те же вредные экологи ческие воздействия, о которых говорилось ранее. По этому и эти планы вызывают движения протеста.

Например, шведские рыбаки потребовали пересмотра проекта строящейся в море ВЭС, так как, по их мне нию, подводный кабель, да и сама станция будут пло хо влиять на рыб, в частности, на угрей, мигрирую щих в тех местах вдоль берега.

Неприятным побочным эффектом использования ветряков для сторонников экологически чистого хо зяйства оказались биологические последствия. Союзы охраны природы отмечают, что многие перелетные птицы вынуждены менять свои маршруты, избегая ветряных парков — мельницы отпугивают птиц. В ряде случаев положение сложилось настолько серьез ное, что местные экологи вынуждены были поставить вопрос о временном закрытии установок или о пере воде их на более гибкий режим работы с учетом се зонных перемещений птиц.

Использование энергии солнца Солнечная энергия обладает неоспоримыми преимуществами перед традиционными органическим и ядер ным горючим. Это исключительно чистый вид энер гии, который не загрязняет окружающую среду, а само ее использование не связано ни с какой биологической опасностью.

Использование солнечной энергии в боль ших масштабах не нарушает сложившегося в эволюции энергетического баланса нашей планеты. Это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавлива ния техническими устройствами) или опосредованно через продукты фотосинтеза, круговорот воды, движе ние воздушных масс и другие процессы, которые обус ловливаются солнечными явлениями.

Использование солнечного тепла - наиболее про стой и дешевый путь решения отдельных энергети ческих проблем.

Подсчитано, что в США для обогре ва помещений и горячего водоснабжения расходуется около 25% производимой в стране энергии. В север ных странах, в том числе и в России, эта доля замет но выше. Между тем, значительная доля тепла, необ ходимого для этих целей, может быть получена по средством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой сол нечной радиации поступает на поверхность Земли.

Отопление и горячее водоснабжение как низкотем пературные процессы преобразования солнечной энер гии в теплоту могут быть осуществлены сравнительно простыми техническими средствами.

Солнечные водонагреватели начинают использоваться для целей теплои горячего водоснабжения индивидуальных по требителей в южных климатических зонах.

Наиболее распространено улавливание солнечной энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое.

Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Име ются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, напри мер, потоками воздуха или воды. Еще более просты нагревательные системы пассив ного типа.

Циркуляция теплоносителей здесь осуще ствляется в результате конвекционных токов: нагретый воздух или вода поднимается вверх, а их место занимают более охлажденные теплоносители. При мером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хо рошими изоляционными свойствами материалов, спо собными длительно удерживать тепло. Для умень шения перегрева днем и теплоотдачи ночью исполь зуются шторы, жалюзи, козырьки и другие защит ные приспособления. В данном случае проблема наиболее рационального использования солнечной энер гии решается через правильное проектирование зда ний.

Некоторое удорожание строительства перекры вается эффектом использования дешевой и идеально чистой энергии.

Преобразование солнечной энергии в электрическую возможно посредством использования фотоэлементов, в которых солнечная энергия индуцируется в элект рический ток без всяких дополнительных устройств.

Солнечная энергия - практически неограниченный источник, мощность которого на поверхности Земли оценивается в 20 млрд кВт.

Годовой поток солнечной энергии на Землю эквивалентен 1,2- 10 й т условного топлива. Для сравнения можно указать, что мировые запасы органического топлива равняются всего 6 • 10 12 т условного топлива.

Крупномасштабное производство электроэнергии на солнечных электростанциях имеет определенные труд ности, поскольку источник солнечной энергии отлича ется низкой плотностью.

Поэтому площадь для сбора солнечной энергии и ее концентрации на оптических системах доходит до нескольких десятков квадратных километров. Из-за большой стоимости единицы по верхности модулей концентратов создание мощных СЭС требует значительных затрат.

Энергия воды, океанических и термальных вод Энергия, выделяемая при волновом движении масс воды в океане, действительно огромна.

Средняя волна высотой 3 м несет примерно 90 кВт энергии на 1 м 2 побережья.

Однако практическая реализация данной энергии вызывает большие сложности. В настоящее время эта энергия используется в незначительном количестве из-за высокой себестоимости ее получения.

Недостаточно до настоящего времени используют ся энергетические ресурсы средних и малых рек (дли на от 10 до 200 км). Только в России таких рек имеется более 150 тысяч. В прошлом именно малые и средние реки являлись важнейшим источником по лучения энергии.

Небольшие плотины на реках не столько нарушают, сколько оптимизируют гидроло гический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обус ловленного природопользования, мягкого вмешатель ства в природные процессы.

Водохранилища, созда вавшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колеба ния воды в реках и стабилизируют уровни грунто вых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных эко систем.

Имеются расчеты, что на мелких и средних реках можно получать не меньше энергии, чем ее получают на современных крупных ГЭС. В настоящее время име ются турбины, позволяющие получать энергию, используя естественное течение рек без строительства плотин. Такие турбины легко монтируются на реках и при необходимости перемещаются в другие места. Хотя стоимость получаемой на таких установках энер гии заметно выше, чем на крупных ГЭС, ТЭС или АЭС, но высокая экологичность делает целесообразным ее получение.

Несравнимо более реальны возможности использо вания геотермальных ресурсов. В данном случае ис точником тепла являются разогретые воды, содержа щиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров (например, на Камчатке)! Геотермальная энергия может использоваться как в виде тепловой, так и для полу чения электричества.

Ведутся также опыты по использованию тепла, содер жащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие тер мальные воды. Уже в настоящее время отдельные города или предприятия обеспечиваются энергией геотермальных вод. Это, в частности, относится к столице Исландии — Рей кьявику. В начале 80-х годов в мире производилось на геотермальных электростанциях около 5000 МВт элек троэнергии (примерно 5 АЭС). В России значительные ресурсы геотермальных вод имеются на Камчатке, но используются они пока в небольшом объеме. В бывшем СССР за счет этого вида ресурсов производилось толь ко около 20 МВт электроэнергии.

Достоинства использования глубинного тепла земли очевидны. ГеоТЭС может функционировать десятки лет, используя практически неугасаемые тепловые котлы.

Себестоимость электроэнергии, получаемой таким образом, несмотря на значительные первона чальные затраты, вполне сравнима с той, которую мы имеем на тепловых и атомных электростанциях. Кро ме того, ГеоТЭС не наносит урона экологии, не заг рязняет выбросами окружающую среду.

Использование тепла земных недр весьма перспек тивно с позиций охраны окружающей среды. В настоя щее время во многих странах мира для выработки электроэнергии и отопления зданий, подогрева теп лиц и парников используется тепло горячих источни ков. Речь идет об огромных резервах экологически чистой тепловой энергии, о возможности с большим экономическим эффектом заменить до 1,5 млн т орга нического топлива в важнейших отраслях, включая сельское и коммунальное хозяйства.

Геотермальные электростанции по компоновке, обо рудованию, эксплуатации мало отличаются от тради ционных ТЭС и практически не вызывают экологичес ких последствий.

Температура месторождений геотер мальных вод Камчатки доходит до 257°С, глубина за легания - 1200 м.

Выявленные в этом районе тепловые ресурсы могли бы обеспечить работу геотермальных электростанций общей мощностью 350-500 МВт . Сравнительные характеристики экономической эф фективности нетрадиционных энергоисточников при водятся в таблице 5. Таблица 5 Сравнительная характеристика различных способов получения энергии

Тип электростанции Удельный съем энергии с единицы площади занимаемой земли (Вт/м 2 ) Удельные капиталовложения ( отн . ед.)
Ветровая 0,4 4,5
Солнечная 30 3
Геотермальная 4 3
Атомная 1300 1
Заключение На основании вышеизложенного можно сделать следующие выводы: 1. На современ ном этапе тепловые электростанции выбрасывают в ат мосферу около 20% от общего количества всех вредных отходов. Они существенно влияют на окружающую среду района их расположения и на со стояние биосферы в целом.

Наиболее вредны конденса ционные электрические станции, работающие на низ косортных видах топлива. 2. Одним из важнейших воздействий гидроэнер гетики на окружающую среду является отчуждение значительных площадей плодородных земель под водохранилища. В России, где за счет ис пользования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн га земель. На их месте уничтоже ны естественные экосистемы.

Однако ГЭС обладает жизнесберегающей фун кцией - выработка каждого млрд кВтч элект роэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год. 3. Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная.

оценка самолета в Москве
оценка стоимости ноу хау в Калуге
оценка для наследства в Туле