Вклад отечественных ученых в развитие материаловедения

Вклад отечественных ученых в развитие материаловедения

Материалы – это исходные вещества для производства продукции и вспомогательные вещества для производственных процессов.

Вокруг нас повсюду материалы. И их создание – заслуга ученых. Для современной молодежи важно знать, какой вклад внесли отечественное ученые в развитие науки (а именно материаловедения), как повлияли их открытия на экономику России. Для человека XXI века и гражданина России мало знать только о вкладе гениальных русских ученых М.В. Ломоносова (научно обосновал атомно-молекулярное строение материи, разработал корпускулярную теорию), Д.И. Менделеева (открыл периодический закон химических элементов) и В.И. Вернадского.

Помимо них были и другие выдающиеся ученые, исследования и открытия которых стали значимыми для науки и развития страны. Выбор данной темы обусловливается ее актуальностью. Цель курсовой работы собрать и проанализировать имеющуюся литературу по данной теме, рассмотреть персональный вклад и судьбу ученых в этой области, проанализировать роль открытий отечественных ученых в развитие экономики России.

Задачи: 1. Рассмотреть биографические данные ученых; 2. Проанализировать вклад русских ученых в развитие материаловедения; 3. Проанализировать информацию и составить сводную таблицу о достижениях и их значении для страны.

Методы исследования: сбор и анализ литературы и Интернет-ресурсов. РАЗДЕЛ I 1. ДМИТРИЙ КОНСТАНТИНОВИЧ ЧЕРНОВ 1.1. Краткие биографические данные Чернов Дмитрий Константинович [20. 10(1.11). 1839, Петербург, - 2.1.1921, Ялта], русский учёный в области металлургии, металловедения, термической обработки металлов.

Родился в семье фельдшера. В 1858 окончил Петербургский практический технологический институт, затем работал в механическом отделении Петербургского монетного двора. В 1859-1866 преподаватель, помощник библиотекаря и хранитель музея Петербургского практического технологического института. С 1866 инженер молотового цеха

Обуховского сталелитейного завода в Петербурге, в 1880-1884 занимался разведкой месторождений каменной соли в Бахмутском районе (Донбасс); найденные им залежи получили промышленное значение. С 1884, по возвращении в Петербург, работал в Морском техническом комитете, с 1886 (одновременно) главный инспектор Министерства путей сообщения по наблюдению за исполнением заказов на металлургических заводах. С 1889 профессор металлургии Михайловской артиллерийской академии. 1.2. Д. К. Чернов и артиллерийское дело Почти два десятилетия - с 1866 по 1885 г . - Д. к.

Чернов посвятил в основном усовершенствованию металлургических процессов производства артиллерийских орудий и снарядов и достиг в этом отношении крупнейших успехов, получивших мировое признание. К началу профессорской деятельности Д. К. Чернова в Артиллерийской академии относится также разработка им важнейшего для службы орудий вопроса об износе стволов. С первого же года своего пребывания в академии он, на основании личных наблюдений и опытов, приступил к тщательной разработке вопроса о причинах выгорания каналов в стальных орудиях и указал главнейшие пути успешной борьбы с этим явлением.

Детально анализируя явления, происходящие в канале орудия при выстреле, Д.К. Чернов создал свою теорию, которая хорошо объясняет происхождение процесса разгара, указывает его признаки и возможные средства противодействия этому разрушительному процессу и точно согласуется с картиной выгорания каналов в стальных орудиях, встречающейся в действительности. Эту теорию Д. К. Чернов излагал постоянно своим ученикам в лекциях по курсу сталелитейного дела, но лишь в 1912 г . выступил публично в Русском металлургическом обществе с докладом «О выгорании каналов в стальных орудиях». Почти сразу после появления в печати эта работа Д. К. Чернова была переведена на многие европейские языки и доставила автору широкую известность в артиллерийских кругах всего мира. 1.3. Работа Д. К. Чернова над созданием совершенных скрипок и других смычковых инструментов В начале 1911 г . на страницах “Русской музыкальной газеты” появилось сообщение правления Общества друзей музыки о “публичном испытании качеств струнных музыкальных инструментов, построенных профессором Д.К. Черновым в сравнении с инструментами старых мастеров” [10]. Музыкальное собрание состоялось в Малом зале Санкт-Петербургской консерватории 16 января 1911 г . В конкурсе проходили испытание знаменитые творения старых итальянских мастеров: скрипки работы Гвадалини, А. Страдивари и С. Серафино, альты Гаспаро да Сало, Мантегаци и виолончель работы Гварнери, а также музыкальные инструменты Д.К. Чернова. При общем количестве баллов, которые получили инструменты старых мастеров, в интервале от 40 до 58, инструментам Д.К. Чернова были выставлены следующие оценки: скрипке № 12 - 53 балла, альту - 50, виолончели - 48 баллов.

Результаты конкурса оценивало авторитетное жюри, в состав которого входили крупные деятели искусства, профессора Санкт-Петербургской консерватории - Л.С. Ауэр, Г.И. Варлих, В.С. Васильев и др. Во время концерта на сцене вместе с исполнителями за занавесом находились представители жюри и правления Общества. По окончании конкурса “членами жюри и публикой была устроена Д.К. Чернову овация” [ 10 ]. Выдающийся характер этому событию в культурной жизни России придавало еще и то обстоятельство, что мастером, сотворившим эти столь высоко оцененные музыкальной общественностью Санкт-Петербурга инструменты, был человек, по своему образованию и профессиональной ориентации далекий от мира искусства, - профессор металлургии Михайловской артиллерийской академии Д.К. Чернов, ученый, широко известный в России и за рубежом своими фундаментальными открытиями в области науки о металлах.

Интерес к созданию струнных инструментов у Д.К. Чернова возник в начале 1860-х гг.

Сначала это было изучение литературы, затем - исследование скрипок Амати, Штайнера, Страдивари, Бергонци, Гварнери, а также “более или менее удачных копий Вильома с подобных оригиналов”. Были сделаны первые приближенные выводы относительно влияния “заметных элементов конструкции на звуковые качества инструментов” [6]. Свои наработки Д.К. Чернов начал опробовать, исправляя грубый недостаток “обыкновенных фабричных инструментов, заведомо дурных качеств”, вскрывая эти скрипки и после изменения размеров тех или иных частей, склеивая их. К изготовлению новых скрипок он приступил в 1901 г ., присваивая каждой свой порядковый номер. Лишь к 1904 г . Д.К. Чернов изготовил скрипку, удовлетворившую автора “на три четверти”. Это была скрипка № 4, нелакированная. 9 февраля 1904 г . она была подарена гастролировавшему в Петербурге 10-летнему венгерскому виртуозу Францу Вечею, которому “она очень понравилась”. Отмеченная на конкурсе 1911 г . скрипка № 2 была изготовлена в ноябре 1905 г . по патрону знаменитой скрипки Страдивари ( 1715 г .), носящей имя виртуоза Алара. Из воспоминаний А.Д. Адеркас-Черновой: Пытаясь выявить “секрет” итальянских скрипок, отец сконструировал инструмент, который определял толщину деки при помощи целого набора камертонов. Этот прибор позволял установить, где и какая толщина деки дает ту или иную силу звука, а также тембр.

Ученому удалось доказать, что секрет итальянских скрипок зависит главным образом от толщины деки и значительно меньше от просушки или обыгрывания скрипок, как считалось раньше. Отец изготовил 12 скрипок, 4 альта и 4 виолончели. Это был его отдых после напряженной научной работы. Над инструментами он работал часто в присутствии жены, которая обычно читала ему вслух газеты “Новое время” и “Сын отечества” [1 4 , с. 192]. По мнению одного из биографов Д.К. Чернова Л. И. Гумилевского и авторов брошюры, изданной в качестве проспекта к конкурсному испытанию 1911 г ., деятельность Д.К. Чернова по созданию музыкальных инструментов развивалась в довольно узком временном интервале, а именно: 1901–1906 гг. [ 3 ; 6 ]. Однако результаты исследования профессора металлургии Г.Н. Дубинина, доктора технических наук и одновременно скрипача по второму образованию, расширяют эти рамки.

Задавшись целью проследить судьбу музыкальных инструментов Д.К. Чернова, в 1958 г . Г.Н. Дубинин обнаружил скрипку № 14, датированную 1907 г ., которая в настоящее время (вместе с альтом № 2) хранится в Петербургском государственном институте театра, музыки и кинематографии [ 5 ; с. 106–108]. Неясность в этом вопросе добавляют также материалы, выявленные в документальном фонде Политехнического музея. На страницах одной из записных книжек Д.К. Чернова обнаружены записи, сделанные в феврале 1916 г . Они свидетельствуют об опытах, которые проводил Д.К. Чернов в этот период по влиянию характера различных материалов и степени натяжения струн на качество звучания. Еще одним дошедшим до нас свидетельством деятельности Д.К. Чернова по изготовлению струнных инструментов является скрипка, хранящаяся в фондах Государственного центрального музея музыкальной культуры им. М.И. Глинки. На инструменте - автограф ученого и надпись, свидетельствующие о том, что профессор Д. Чернов изготовил данную скрипку в 1905 г . в С.-Петербурге и присвоил ей № 9. Скрипка экспонировалась на двух выставках, проходивших в Политехническом музее: в декабре 1989 г . - январе 1990 г . “150 лет великому русскому металлургу Д.К. Чернову” и в ноябре 1991 г . - марте 1992 г . “Из истории инженерной мысли России (серед. X I X - нач. XX вв.)”. Архивные поиски продолжаются.

Возможно, удастся более точно определить направление и область исследований Д.К. Чернова при создании струнных музыкальных инструментов. Но одно с уверенностью можно утверждать, что эта деятельность профессора металлургии вышла далеко за рамки любительства и стала существенным фактором развития музыкальной культуры России. 1.4. Д.К. Чернов и советская металлургия В период расцвета своих творческих сил он находит применение им в металлургии.

Вдохновителями его были горный инженер П. П. Аносов, передовой русский металлург-практик первой половины XIX века, и великий русский ученый-эниклопедист XVIII века М. В. Ломоносов, творец «Первых оснований металлургии или рудных дел». Д.К. Чернов, умело сочетал теорию с практикой, не только создал науку о металлах в полном смысле этого слова, но смело и уверенно вывел металлургию на тот путь технического прогресса и научного совершенствования, с которого она, говоря его же словами, при дальнейшем движении вперед никогда не сойдет. Д. К. Чернову выпало на долю редкое для его эпохи счастье заслужить при жизни всеобщее признание и приобрести мировую славу.

Виднейшие деятели советской науки и техники - А. А. Байков, Н. С. Курнаков и безвременно скончавшийся Н.И. Беляев - еще в начале текущего столетия в своих научных исследованиях успешно продолжали дело, начатое «отцом металлографии железа и стали», развивая дальше учение о закалке, термический анализ и наиболее существенные вопросы первичной кристаллизации металла в слитках. 3начение работ ряда ученых и инженеров зарубежных стран свелось в основном к разработке и усовершенствованию методики металлографического анализа сплавов, к конструированию необходимой для этого специальной аппаратуры, к накоплению экспериментального материала и углублению теоретической базы путем привлечения учения о равновесии физико-химических систем и правила фаз применительно к задачам металлографии, основоположником которой был Д. К. Чернов. Д. К. Чернов впервые установил положение о прерывистом ходе первичной кристаллизации стали в слитках, приводящем к образованию так называемых разрывных кристаллов. Н. Т. Гулцов, исходя из этого, выдвинул широко развиваемое современными отечественными металловедами представление о прерывистом, периодическом, волнообразном процессе кристаллизации. В области термической обработки стали величайшая заслуга Д. К. Чернова состоит не только в открытии им критических точек, знание которых позволяет правильно установить температуру отжига, закалки и отпуска, но также и в том, что он впервые разработал и успешно осуществил метод закалки в горячих средах, известный в настоящее время под названием изотермической и ступенчатой обработки.

Последний метод, достигший благодаря трудам советского металловеда С. С. Штейнберга и его сотрудников и учеников высокой степени совершенства, получает с каждым годом всё более широкое применение в производственных условиях, позволяя сводить к минимуму закалочные напряжения. Как известно, Д. К. Чернов обнаружил такие явления, как «линии Чернова», видимые на полированной поверхности при холодном деформировании металла, и «сетки Чернова», представляющие сеть мельчайших трещинок на поверхности металла после многократных, быстро протекающих нагревов и охлаждений. Это привело советских исследователей к созданию наиболее совершенных методов изучения распределения внутренних напряжений в металлах, к установлению понятия термической усталости и разработке способов предотвращения данного дефекта во многих случаях практики.

Наконец, мысль Д. К. Чернова о возможности выплавки железа и стали непосредственно из руды, минуя получение промежуточного продукта - чугуна, сейчас получает реальное воплощение в успешных опытах советских металлургов-сталеплавильщиков.

Подобно другим корифеям русской науки, Д. К. Чернов был всегда увлечен своим делом до самозабвения и горячо любил свою родину, о чем свидетельствует каждая страница его научного наследства.

Основные идеи Д. К. Чернова не только не устарели, но органически влились в работы советских ученых, освещая путь к новым открытиям. Труды Дмитрия Константиновича Чернова, основателя металлографии и одного из пионеров научной металлургии, занимают почетное место в сокровищнице мировой науки. 2. НИКОЛАЙ СЕМЕНОВИЧ КУРНАКОВ 2.1. Краткие биографические данные Николай Семёнович Курнаков родился 6 декабря 1860 года в г.

Нолинске Вятской губернии. Отец его - офицер, участник обороны Севастополя, был тяжело контужен сначала на Малаховом кургане, а затем на 3-м бастионе. Хотя он и оправился от полученных ран, но здоровье его было подорвано, и он скончался в 1868 г ., оставив двух своих малолетних сыновей на попечение их матери.

Первоначальное воспитание Н. С. Курнаков получил дома, а затем в Нижегородской военной гимназии, курс которой окончил в 1877 г . Ещё тогда, когда Н. С. Курнаков был гимназистом, он устроил домашнюю химическую лабораторию, где самостоятельно проводил опыты по химии. В 1877 г . Н. С. Курнаков поступил в Петербургский Горный институт, который окончил в 1882 г . Будучи студентом института, он провёл наблюдения над кристаллизацией квасцов и соли Шлиппе, которые дали материал для первых сообщений Н. С. Курнакова в Минералогическом обществе в 1880 г . По окончании курса по заводскому отделению со званием горного инженера Н. С. Курнаков был оставлен при институте для занятий в химической лаборатории, а в 1882 г . был командирован на алтайские заводы для исследования операций по выплавке меди, свинца и серебра. В следующий год он выехал за границу с целью изучения соляного дела, металлургии и пробирного искусства. Здесь Н. С. Курнаков работал в лабораториях и слушал курсы в Фрейбергской академии; лето 1884 г . он посвятил подробному исследованию солеваренных заводов.

Результатом заграничной командировки явилась диссертация Н. С. Курнакова «Испарительные системы соляных варниц», представленная им в 1895 г . для получения звания адъюнкта по кафедре металлургии, галлургии (соляного дела) и пробирного искусства. 2.2. Научно-педагогическая деятельность С 1885 по 1893 г ., будучи адъюнктом, Н. С. Курнаков руководил практическими занятиями студентов по горнозаводскому техническому анализу, пробирному искусству и читал лекции по соляному делу, технологии топлива и горючих материалов, а также по общей металлургии. После защиты диссертации «О сложных металлических основаниях» в 1893 г . последовало назначение Н. С. Курнакова профессором кафедры неорганической химии. Через шесть лет он стал заведующим кафедрой аналитической химии и химической лабораторией Горного института. С этого момента начинается особенно кипучая научно-педагогическая деятельность Н. С. Курнакова. По его предложению пробирная лаборатория Горного института была переведена в новое, специально приспособленное помещение и значительно расширилась. В 1899 г . он организовал преподавание физической химии в Электротехническом институте. При учреждении Петербургского политехнического института Н. С. Курнаков, вместе с профессорами Д. И. Менделеевым, Н. А. Меншуткиным и П. И. Вальденом, участвовал в разработке вопросов, связанных с устройством в нём лаборатории и преподаванием химии. В 1902 г . он был приглашён занять здесь кафедру общей химии, которой руководил до 1930 г . Химическая лаборатория Политехнического института, как по своим размерам, так и по своему оборудованию была одной из самых значительных лабораторий в России.

Научная деятельность Н. С. Курнакова была тесно связана с его педагогической работой в Горном, Электротехническом и Политехническом институтах. В их химических лабораториях началась и успешно развивалась его научно-исследовательская деятельность.

Последнюю Н. С. Курнаков всегда рассматривал как свой общественный долг; он постоянно заботился о расширении научных исследований путём привлечения к этой деятельности всё новых и новых сил. В своих лекциях, практических занятиях, и в особенности при руководстве дипломными работами студентов, Н. С. Курнаков будил в студентах любовь к научно-исследовательской работе. В своей деятельности Н. С. Курнаков умело сочетал теорию и практику, интересы науки и промышленности. Он являлся не только выдающимся представителем химической науки в России, но и большим знатоком ряда отраслей промышленности, с которыми был связан на протяжении всей своей жизни. За свою плодотворную научно-техническую деятельность Н. С. Курнаков был избран почётным членом многих отечественных и иностранных обществ и научных организаций. В 1908 г . советом Электротехнического института он был избран почётным членом института и членом совета. В 1912 г . был избран членом русского отдела Международной комиссии по номенклатуре неорганических соединений. В связи с 80-летием Н. С. Курнакова Всесоюзное химическое общество им. Д. И. Менделеева избрало его своим почётным членом. В 1913 г . Академия наук избрала Н. С. Курнакова ординарным академиком. В 1930 г . Н. С. Курнаков получил первую Менделеевскую премию за труды по химии; в 1939 г . он был награждён орденом Трудового Красного Знамени за достижения в области химии. 80-летие Н. С. Курнакова отмечено правительством СССР присуждением ему звания заслуженного деятеля науки СССР. В 1941 г . ему была присуждена Сталинская премия за работы по физической химии и труд «Введение в физико-химический анализ», опубликованный в 1940 г . 19 марта 1941 года Н. С. Курнаков скончался. 2.3. Научно-исследовательская деятельность Работы Н. С. Курнакова, число которых превышает 200, касаются самых разнообразных вопросов как теоретической, так и практической химии.

Первый период своей научно-исследовательской деятельности (1891 - 1902 гг.) Н. С. Курнаков посвятил изучению вопросов, связанных со строением и свойствами так называемых комплексных соединений, принадлежащих к той группе веществ, которые образуются не из простых молекул, а из групп соединившихся друг с другом молекул. Он открыл ряд новых соединений платины и установил чрезвычайно важную закономерность, дающую возможность при помощи реакции с тиомочевиной определить внутреннее строение ряда комплексных соединений двухвалентной платины.

Работами Н. С. Курнакова во второй период его деятельности, связанными с изучением металлических сплавов, открылась новая блестящая страница в истории развития металлографии.

Работы Н. С. Курнакова по изучению металлических сплавов вскрыли ряд весьма важных закономерностей, объясняющих как поведение металлов при их сплавлении, так и предопределяющих физико-химические и механические свойства полученных сплавов. Они привели к значительным обобщениям общетеоретического характера.

Определение понятия химического соединения, развитие учения о химической диаграмме «состав - свойство» и создание нового отдела общей химии – «физико-химического анализа» представляют собой основные достижения творческой работы Н. С. Курнакова в этой области. Н. С. Курнаковым был создан новый отдел общей химии – физикохимический анализ, основной целью которого является исследование соотношений между химическим составом и измеримыми на опыте свойствами систем.

Физико-химический анализ, созданный трудами Н. С. Курнакова, дал в руки исследователя мощное орудие для определения таких тонких различий в состоянии изучаемых тел, которые были совершенно недоступны для обычно применявшихся приёмов химического исследования.

Особенно продуктивным оказалось применение метода физико-химического анализа для разрешения вопроса о природе химического индивидуума, выдвинутого Н. С. Курнаковым. Все работы Н. С. Курнакова по металлическим сплавам характеризуются одной примечательной особенностью: все они являются примером сочетания глубокой теории с насущными вопросами практики.

Классификация металлоидов на соединения бертоллетовского и дальтоновского типов, установление сингулярных элементов химической диаграммы и нахождение зависимости между свойствами и составом равновесных систем являются одинаково важными как для теории металлических сплавов, так и для практического применения их в различных областях техники.

Установление Н. С. Курнаковым влияния факта образования твёрдых растворов на понижение электропроводности и её температурного коэффициента сыграло огромную роль в дальнейшей судьбе развития техники получения реостатных сплавов.

Нахождение новых сплавов, обладающих высоким электросопротивлением и ничтожным, почти нулевым, температурным коэффициентом, становится с этих пор предметом не грубого эмпиризма, а научного исследования.

Показанная в ряде работ Н. С. Курнакова связь между изменениями состава и механическими и другими техническими свойствами твёрдых растворов послужила надёжным основанием для выбора и отыскания металлических сплавов, необходимых для удовлетворения разнообразных технических требований. 2.4. Соляное дело Наряду с многочисленными исследованиями по металлическим сплавам, Н. С. Курнаков много времени и внимания отдавал соляному делу.

Занимаясь лечебными грязями и изучая химические составы рассолов Куяльницкого и Хаджибейского лиманов, а также озёр Генического и Перекопских, Н. С. Курнаков для объяснения их общего генезиса, несмотря на значительное отличие в химическом составе, вводит понятие о метаморфизации рассолов, о коэффициенте метаморфизации, являющемся критерием изменения химического состава естественных водоёмов в процессе их жизни. В связи с практическим освоением рассолов Карабогазского залива Н. С. Курнаков совместно с С. Ф. Жемчужным изучает взаимную водную систему (при 0 0 и 25 0 ) «хлористый натрий - серномагниевая соль». На основе этих исследований он дал классическую диаграмму равновесий, которой широко пользуются при решении вопросов, связанных не только с проблемой использования Кара-Богаз-Гола, но и многих других сульфатных озёр Союза. В ней нашли отображение общая картина соляных превращений, условия кристаллизации различных солей, границы их устойчивого существования. Она указала путь к познанию генезиса соляных отложений в природе и дала в руки техники надёжное средство для выделения отдельных веществ в чистом состоянии. Н. С. Курнаковым был поднят большой вопрос об отечественном калии. Ещё в 1916 г . на заседании Физико-математического отделения Академии наук Н. С. Курнаков доложил о результатах первых анализов образцов калиевых солей и высказал мысль, что на севере, в Соликамске, мы, несомненно, имеем дело с сильвинитовыми отложениями. В следующем году он писал, что «нахождение калиевых соединений в соликамских отложениях имеет не только научное, химическое и минералогическое значение, но может представить и большой промышленный интерес». Поставленные после Октябрьской революции разведки на калий в Соликамске привели к открытию месторождения мирового значения.

Благодаря также трудам Н. С. Курнакова в настоящее время можно говорить уже о реальных возможностях получения калия в больших промышленных масштабах и в Урало-Эмбенском районе в Казахстане. Для выяснения ряда вопросов, связанных с эксплуатацией и переработкой калиевых солей, Н. С. Курнаковым был проведён ряд работ по изучению равновесий соответствующих солевых систем. Под его руководством был начат ряд работ по изучению борнокислых соединений и условий их образования в связи с открытием отложений боратов в Индерском районе.

Открытие отечественных месторождений калия поставило перед Н. С. Курнаковым вопрос, тесно связанный с использованием калиевых солей, об изучении фосфорно-аммиачно-калиевых концентрированных удобрений. Его исследования дали разрешение вопроса о внесении в почву удобрений в легко усвояемой форме. В научную практику соляного дела Н. С. Курнаков ввёл особый ряд специальных полевых экспедиционных исследований, во время которых проводятся наблюдения физико-химического характера над соляными водоёмами, сопровождаемые последующими лабораторными исследованиями. Они оказались чрезвычайно плодотворными в познании жизни соляных водоёмов и путей их промышленного освоения. Н. С. Курнаков был одним из непревзойдённых знатоков соляного дела в нашем Союзе. Он всегда отдавал себя целиком делу исследования и строительства этой важной области народного хозяйства. Он собрал вокруг себя большие научные кадры учеников и последователей, с честью продолжающих начатое им дело. Н. С. Курнаков вооружил их надёжным научным методом - «физико-химическим анализом», позволяющим рассматривать и разрешать сложные теоретические и практические вопросы путём всестороннего изучения объекта исследования через его диаграммы «состав - свойство», рисующие границы существования и свойства отдельных веществ, подлежащих рассмотрению в зависимости от физических и химических факторов равновесия. Этот метод и впредь будет являться надёжным орудием при разрешении сложных вопросов как теоретического, так и практического характера, выдвигаемых потребностями нашей Родины. 3. НИКОЛАЙ АНАТОЛЬЕВИЧ МИНКЕВИЧ 3.1. Краткие биографические данные Николай Анатольевич Минкевич родился 17 февраля 1883 г . в маленьком уездном городке Малмыже Вятской губернии в плохо обеспеченной, но дружной семье. По окончании с золотой медалью гимназии в 1902 г . Н. А. Минкевич не колеблясь определил сой дальнейший путь. Он хотел быть инженерм и в этом же году поступил на металлургический факультет Санкт-Петербургского политехнического института.

Молодым инженером-доменщиком отлично закончил политехнический институт в 1907 г . Н. А. Минкевич был оставлен при институте для подготовки к диссертации на звание адъюнкт-профессора.

Однако, следуя примеру крупнейших ученных металлургов – П. П. Аносова, Д. К. Чернова, А. А. Байкова, М. А. Павлова, молодой инженер принимает решение закрепить и углубить свои знания на практической заводской работе. 3.2. Работа на Обуховском заводе В январе 1908 г . он поступает на Обуховский завод, где в течении шести лет работает сначала инженером цеха, а затем помощником заведущего термическим цехом.

Складывавшаяся в то время обстановка способствовала развитию интереса Минкевича к изучению закалки стали.

Термическая обработка стали в начале XX века являлась новой прогрессивной областью техники, зародившейся в недрах металлургии. Идеи великого русского ученого Д. К. Чернова широко распространились в среде наших инженеров. Идеи о зависимости свойств стали от ее структуры претворялись в жизнь, развивалась термическая обработка сплавов.

Россия создавала свою качественную металлургию. В ноябре 1911 г . Н. А. Минкевич предложил оригинальную конструкцию закалочного аппарата для закалки головной части снаряда. При этом им был разработан вопрос о скорости охлаждения и характере необходимой охлаждающей среды.

Аппарат был сконструирован таким образом, что путем замены некоторых его узлов легко осуществлялся переход от обработки снарядов одного калибра к обработке снарядов другого калибра. В том же году Минкевич получил патент на конструкцию коридорной печи методического типа с разрезным посередине сводом, в которой изделия передвигаются при помощи механизма, подвешенного на балках, расположенных над печью.

Дальнейшая работа Н. А. Минкевича на Обуховском заводе и его возрастающий практический опыт позволили внести ряд других улучшений в технологию термической обработки деталей орудий и снарядов. В это время, как и в последующие годы, на протяжении всей жизни, практическая деятельность Николая Анатольевича сочеталась с теоретической и литературной работой. Он опубликовал обстоятельную и чрезвычайно важную для того времени работу «Методы определения твердости металлов». Метод оценки «качеств металлов и согласования их со службой металлов в разных изделиях» в то время находился в ряду «новых методов механических испытаний». Как и испытания ударными и повторными нагрузками, определение твердости металлов только еще выдвигалось «на первый план». Работа Н. А. Минкевича имела большое значение в деле распространения этого метода на заводах России. Она была опубликована в «Журнале Русского металлургического общества» в 1911 г . и тогда же вышла отдельным оттиском в виде брошюры. При сравнительно небольшом объеме (3 печатных листа) эта работа представляла собой законченную монографию по рассматриваемому вопросу.

Описание существовавших тогда методов определения твердости металлов и сплавов было дано в ясной и доходчивой форме; благодаря последовательному разбору различных методов определения твердости и четкой классификации приборов, основанных на том или ином принципе, эта работа и сейчас читается с большим интересом. В 1912 г . была опубликована вторая работа Н. А. Минкевича, являющаяся продолжением исследования, - «Вопрос о связи между твердостью и другими механическими качествами стали». За время работы на Обуховском заводе Н. А. Минкевич занимался разработкой нового вида термической обработки – одинарной обработки.

Одинарная обработка, состоящая из одной операции – нагрева до температуры закалки с последующим охлаждением с некоторой средней скоростью – должна была заменить термическую обработку, состоящую из двух операций: закалки и отпуска. Этот метод Николай Анатольевич применил при термической обработке снарядов. В эти же годы (1911-1912) им были исследованы новые хромомедистые и хромоникельмолибденовые стали, из которых в дальнейшем изготовлялись изделия специального назначения. 3.3. Научно-педагогическая деятельность В 1920 г . в жизни Н. А. Минкевича произошла большая перемена: он был приглашен на должность профессора Московской горной академии. Это молодое советское учебное заведение, организованное по инициативе В. И. Ленина, собирало в это время виднейших ученых страны. Среди них были В. Е. Грум-Гржимайло, Н. С. Верещагин, позднее избранные академиками М. А. Павлов и Н. П. Чижевский и чл.-корр.

Академии наук СССР Б. В. Старк. В Горной Академии Н. А. Минкевич организовал на металлургическом факультете кафедру и специальность металловедения и термической обработки стали. В 1930 г . металлургический факультет Горной Академии выделился в самостоятельный институт стали имени И. В. Сталина, в котором Николай Анатольевич до самой смерти руководил кафедрой металловедения и термической обработки. С 1937 по 1939 г . Н. А. Минкевич был также заместителем директора Московского института стали по учебной и научной работе. Став профессором, Н. А. Минкевич не порывал с промышленностью. Он говорил: «Как ни интересны мне исследования и преподавание, жизнь для меня бьется там - на заводе». Это было лозунгом и руководством к действию на протяжении всей его деятельности. Он учил студентов и занимался наукой для практики, для развития советской металлургии. Он работал в различные годы по совместительству в Гипромезе ВСНХ, научном автомоторном институте, Всесоюзном экспериментальном электротехническом институте, Московском институте металлов, ЦНИИМАШ, Нижегородском автострое, Комитете машиностроения, Металлобюро ГОМЗ, Снарядном объединении, Гипроспецмете орудийно-арсенального объединения, Главном управлении «Спецсталь» Наркомчермета и др. Он работал консультантом, экспертом, членом научных и технических советов. За заслуги в развитии советской науки и промышленности 20 мая 1934 г . Президиум ВЦИК присвоил Н. А. Минкевичу звание заслуженного деятеля науки и техники.

Профессор Н. А. Минкевич написал десятки работ, среди них 14 капитальных трудов по металловедению и термической обработке стали. Он занимался исследованием и внедрением в промышленность процессов азотизации, твердой, жидкой и газообразной цементации стали. Из этих исследований сделан ряд теоретических и производственных выводов, позволивших усовершенствовать имевшиеся ранее и внедрить в. производство новые технологические методы. Он исследовал скорости нагрева стали в различных средах. Под руководством Н. А. Минкевича на заводах проводились различные исследования и эксперименты по термообработке пружин, штампов, инструментов, деталей самолетов, автомашин и др. Н. А. Минкевич был одним из организаторов и руководителей поставленного в Московском институте стали имени И. В. Сталина опытного производства и научного исследования халиловских сталей, выплавленных из халиловских чугунов, природно-легированных хромом и никелем. Эти работы послужили одним из важнейших оснований для решения Правительства о промышленной эксплуатации халиловского железо-рудного месторождения. Н. А. Минкевич участвовал в работах по исследованию и внедрению в производство высококобальтовой магнитной и жаропрочных сталей, изотермической обработки стали. Под его руководством разрабатывались новые марки быстрорежущих сталей, исследовалась их структура и свойства. За создание новых марок и внедрение их в производство в 1941 г . Н. А. Минкевичу была присуждена Сталинская премия 2-й степени.

Большое место в трудах Н. А. Минкевича уделено вопросам технологии и оборудования термических цехов.

Особенно следует отметить труды, посвященные сдвигам в металлургическом производстве, вызванным стахановским движением.

Анализируя эти сдвиги, Н. А. Минкевич формулирует задачи, стоящие перед научно-исследовательскими институтами и втузами. Нужно указать также на многочисленные работы Н. А. Минкевича и его учеников в области фазовых превращений в стали и развития физических методов исследования. Н. А. Минкевич является признанным основателем и руководителем широкой советской школы инженеров термистов-металловедов. Стиль его руководства это, прежде всего стиль организатора коллективной работы. Вся его научная и инженерная деятельность была направлена на решение задач укрепления и развития народного хозяйства и обороны нашей страны. Н. А. Минкевич вдохновлял окружавших его сотрудников и в их коллективе черпал свои силы. Под руководством Н. А. Минкевича из Московского института стали было выпущено свыше 600 инженеров термистов-металловедов.

Десятки человек защитили под его руководством кандидатские диссертации. Среди его учеников много профессоров, докторов наук, руководителей промышленности.

Основной характеристикой научно-технического профиля этих специалистов, помимо металлургической подготовки, является не только подготовка их по металловедению, теории и методике термической обработки стали, но и по практике технологических цехов. 3.4. Работы в области военной промышленности. Опыт первой мировой войны показал, что для изготовления орудий следует применять специальные стали весьма высокого качества. Обзор сталей, применяемых для изделий военной промышленности и их термической обработки в дореволюционной России, сделанный Н. А. Минкевичем, был издан Главвоенпромом в 1922 г . Эта работа позволила правильно наметить ряд составов сталей, подлежащих исследованию с целью улучшения артиллерийской и броневой стали.

Позднее, будучи членом «Междуведомственной комиссии по изысканию сортов специальной стали для орудийных, пулеметных и ружейных стволов» Н. А. Минкевич выступает с рядом докладов на заседаниях этой комиссии.

Некоторые доклады были опубликованы в печати. В частности, в сборнике докладов Междуведомственной комиссии при Артиллерийском комитете за 1926 г . опубликованы два доклада Н. А. Минкевича «К вопросу о выборе стали для орудий» и «Сорта стали, рекомендуемые для лабораторных испытаний». В этих докладах автор рекомендует на основании собственных исследований, заводских и литературных данных ряд различных составов специальной стали, которые могут позволить, в первую очередь, выбрать улучшенные сорта для замены углеродистой стали для орудий существовавших в то время конструкций и, во вторую очередь, выбрать сталь для вновь проектируемых усовершенствованных орудий.

Помимо работы в области орудийного и ружейно-пулеметного дела, Н. А. Минкевич проводил большую работу по совершенствованию производства снарядов и брони.

Качество брони и артиллерийских снарядов прежде всего определяется свойствами материала, из которого они изготовлены. Еще в 1912-1914 гг. Н. А. Минкевич, работая цеховым инженером и помощником заведующего термическим цехом на Обуховском заводе, провел ряд работ по изысканию специальных легированных сталей и разработки методов их производсства. В частности, исследованная Н. А. Минкевичем хромокремнемарганцовистая сталь нашла в последующие годы широкое применение в различных отраслях промышленности. В 1931-1932 гг. Н. А. Минкевич участвовал в работах Комиссии МПУ НКТП и Снарядного треста по выработке методов производства бронебойных снарядов и руководил опытным производством этих снарядов, консультировал проекты снарядных заводов. В период 1930-1931 гг. Н. А. Минкевич был консультантом АУ РККА по снарядам и взрывателям. С 1934 по 1937 гг. Н. А. Минкевич работал в качестве начальника, а затем ответственного консультанта Специального снарядного бюро НКТП и продолжал эту работу по 1938 г . в качестве консультанта одного из научно-исследовательских институтов.

Являясь консультантом этого института, Н. А. Минкевич руководил производством и внедрением в промышленность ряда предложенных им сталей-заменителей. В области броневого дела Н. А. Минкевичем проделана также значительная работа. В 1931 г . по заданию Орудийноружейного объединения Н. А. Минкевичем был произведен анализ и даны консультации по производству тонкой брони на ряде наших заводов. В заключение необходимо указать на изобретение Н. А. Минкевичем метода цементации брони газами, получаемыми путем пиролиза керосина. 3.5. Работы в области авиационной промышленности В результате первой мировой, а затем и гражданской войны, воздушный флот России был почти полностью уничтожен.

Поэтому в первые годы Советской власти уделялось большое внимание развитию авиационной промышленности. Для развития авиастроения было необходимо прежде всего создать новые специализированные цехи и заводы, освоить новое оборудование, создать современную технологию обработки деталей мотора и самолета и решить задачу правильного выбора материала для их изготовления. В решении всех этих вопросов значительная заслуга принадлежит Н. А. Минкевичу. С конца 1924 г . Н. А. Минкевич работал в качестве главного металлурга и консультанта в ГУВП и Авиатресте. Он руководил выбором новых металлургических баз авиастроения, консультировал металлургические заводы и заводы Авиатреста по вопросам металлургического оборудования, руководил разработкой и усовершенствованием технологических процессов термообработки, литья, ковки и холодной протяжки на авиазаводах.

Работая в качестве председателя секции черных металлов Авиаавтостандартной комиссии при ГУМП ВСНХ, а затем, с 1926 г ., при Комитете стандартов, Н. А. Минкевич непосредственно участвовал в составлении всех первых технических условий на черные. металлы для авиастроения и руководил дальнейшим их усовершенствованием и согласованием с заводами-поставщиками. В 1927 г . Н. А. Минкевич разработал план научно-исследовательских и заводских экспериментальных работ по металлургии, обеспечивающих развитие авиастроения.

Анализ вопросов металлургии в авиастроении и программа научно-исследовательских работ были опубликованы Н. А. Минкевичем в 1927 г . В этой работе намечены пути развития авиапроизводства и повышения качества выпускаемых конструкции за счет улучшения металлических полуфабрикатов. В результате этих работ были найдены новые методы изготовления ряда изделий, которые ранее ввозились из-за границы. К таким изделиям относились ленты расчалок, осевые самолетные трубы из хромоникелевой стали, кобальтовые магниты, хромованадиевая пружинная проволока, спицевая и расчалочная проволока, холоднотянутая самолетная и холоднокатаннаялистовая стали.. Кроме того, в результате работ, проведенных Н. А. Минкевичем, представилось возможным улучшить методику изготовления коленчатых валов и клапанов авиамоторов и изыскать стали для их изготовления.

Некоторые из этих работ были опубликованы Н. А. Минкевичем в ряде технических журналов.

Дальнейшая деятельность Н. А. Минкевича непрерывно, вплоть до последних дней его жизни, в том числе и в годы Великой Отечественной войны, была неразрывно связана с авиационной промышленностью.

Развитие авиации ставило все более и более сложные задачи перед металлургией, металловедением и термической обработкой.

Последователи Н. А. Минкевича, многие из которых являются его учениками, продолжают исследования в области рационализации режимов тепловой обработки деталей авиастроения, разработки новых более совершенных режимов термической обработки и изыскания сплавов, могущих удовлетворить требованиям современной авиации.

Многими из этих работ руководил до последних дней своей жизни Н. А. Минкевич.

Плодотворная деятельность Н. А. Минкевича в авиационной промышленности помогла советскому авиастроению, особенно в годы его становления, когда необходимо было решение ряда вопросов, связанных с разработкой новой технологии, переоборудованием металлургических и авиационных заводов, окрепнуть и приступить к массовому выпуску самолетов и моторов. 4. АНДРЕЙ АНАТОЛЬЕВИЧ БОЧВАР 4.1. Краткие биографические данные А. А. Бочвар родился 8 августа 1902 года. В 1923 г . он окончил Высшее техническое училище им. Н. Э. Баумана и затем работал там же преподавателем. С 1930 г . его преподавательская деятельность многие годы была связана с Московским институтом цветных металлов и золота им. М. И. Калинина (впоследствии МИСиС), где он возглавлял кафедру металловедения, основанную его отцом, также известным учёным-металловедом Анатолием Михайловичем Бочваром. В 30-40-е годы Андрей Анатольевич был уже видным учёным, автором ряда широко известных в нашей стране и за рубежом исследований. Им были разработаны теория кристаллизации сплавов эвтектического типа, теория литейных сплавов, основы структурной теории жаропрочности и термической обработки сплавов, изучены механизмы пластической деформации и рекристаллизации металлов и сплавов. Позже, впервые в СССР, им было подробно исследовано явление сверхпластичности металлов и разработана теория этих процессов, установлены закономерности деформации металлов с разным типом кристаллической решётки при циклическом изменении температуры и др.

Учебники А. А. Бочвара по металловедению и термической обработке и сейчас являются настольными книгами металловедов и технологов.

Андрей Анатольевич был одним из основателей отечественной школы металловедения.

Наряду с преподавательской деятельностью он уделял большое внимание нуждам промышленности, и, в частности, впервые в мире разработал и внедрил метод кристаллизации фасонных отливок под давлением. В течение ряда лет он был научным консультантом Всесоюзного института авиационных материалов (ВИАМ). В 1939 г . А. А. Бочвар был избран членом-корреспондентом, а в 1946 г . -действительным членом АН СССР. 4.2. Педагогическая деятельность К работе в институте Андрей Анатольевич приступил в 1946 г . сначала в должности научного консультанта, а затем (с ноября 1947 г .) - начальника отдела, созданного по решению Совнаркома для изучения плутония и урана. В декабре 1952 г . он был назначен директором института, но ещё несколько лет продолжал работу на кафедре.

Однако впоследствии он всё же вынужден был прекратить преподавательскую деятельность, и сосредоточил всё своё внимание на развитии института и решении поставленных задач. Как директор Андрей Анатольевич нёс огромную ответственность за формирование и практическую деятельность всех многочисленных подразделений института с широким спектром сложнейших задач в различных областях знаний, таких, как металлургия, металлофизика, металловедение, коррозия и защита металлов, технология производства топлива, конструкционных материалов и твэлов для ядерных реакторов различных типов и назначения, создание материалов и технологий производства изделий оборонной техники, радиационная химия, переработка облучённого топлива и отходов и др.

Каждая из этих задач представляла собой сложную научную и организационную проблему, и применительно к таким материалам, как уран и плутоний, решалась впервые в мире.

Создание специальных конструкционных материалов с учётом условий их работы в ядерных реакторах также требовало принципиально новых научных подходов. При этом для всех исследований и разработок устанавливались кратчайшие сроки, а их результаты сразу передавались конструкторским организациям и в промышленность. Всё это вызывало необходимость создания уникальной экспериментальной базы и специального оборудования для работы с радиоактивными материалами и организации в институте специализированных научных коллективов, которые возглавили известные ученые и высококвалифицированные специалисты. К работе в институте были привлечены академик И. И. Черняев, чл.-корр. С. Т. Конобеевский, док. техн. наук А. Н. Вольский, док. техн. наук А. С. Займовский, чл.-корр. П. П. Будников, чл.-корр. Н. А. Изгарышев, многие другие учёные и демобилизованные из армии специалисты. Под их руководством складывались лаборатории и отделы, для работы, в которых переводились специалисты из различных отраслей промышленности и поправлялись молодые специалисты, окончившие университеты и ВУЗы страны. 4.3. Научно-исследовательская деятельность Наибольший личный вклад как учёный-металловед Андрей Анатольевич внёс в создание сплавов на основе урана и плутония, конструкционных материалов и промышленных технологий изготовления из них ответственных изделий атомной техники. В 1946 г . в институте были начаты исследования и в 1947 г . впервые в нашей стране получены микрограммовые количества нового, до сих пор неизвестного металла - плутония, а затем и первые данные о его структуре и свойствах.

Советские учёные (С. Т. Конобеевский, Н. Т. Чеботарев, В. И. Кутайцев и др.) во главе с А. А. Бочваром первыми опубликовали диаграммы состояния плутония с различными элементами. В 1949 г . по поручению правительства Андрей Анатольевич возглавил бригаду сотрудников института и под его руководством на комбинате 'Маяк' в сложных и малоприспособленных условиях был создан ядерный заряд первой отечественной атомной бомбы, успешное испытание которой положило конец монополии США в этой области. В последующие годы также при непосредственном участии Андрея Анатольевича был создан заряд первой водородной бомбы.

Незадолго до Первой Международной конференции по мирному использованию атомной энергии (Женева, 1955 г .) С. Т. Конобеевский прочёл в Московском университете доклад об исследовании диаграмм состояния с плутонием, закрепив тем самым приоритет отечественной науки в этой области.

Впоследствии на микроколичествах материала было исследовано взаимодействие плутония практически со всеми элементами Периодической системы элементов Д. И. Менделеева. В процессе этих исследований были разработаны промышленные сплавы на основе плутония.

Талант предвидения, анализ и обобщение конкретных данных позволили Андрею Анатольевичу по результатам, полученным коллективом сотрудников при исследовании микрограммовых образцов, определить все основные свойства плутония и его сплавов, необходимые конструкторам при физических расчетах изделий.

Молодые специалисты тогда вряд ли представляли в полной мере огромную ответственность, которая лежала на Андрее Анатольевиче, но его высокая требовательность к достоверности результатов исследований и обоснованности выводов воспитывали в них чувство причастности к делам государственной важности, строгость к себе и высокую ответственность. В начале 50-х годов И. В. Курчатов поручил Андрею Анатольевичу решение одной из сложнейших проблем атомной техники - проблему живучести твэлов промышленных уран-графитовых реакторов - наработчиков кондиционного плутония для производства ядерных зарядов. Под руководством Андрея Анатольевича и кандидата (впоследствии доктора) технических наук Г. Я. Сергеева была организована специальная лаборатория, выполнены обширные исследования, результаты которых позволили установить причины низкой живучести твэлов в реакторах и создать научную концепцию решения проблемы.

Данные, полученные при изучении структуры и свойств урана в зависимости от химического состава, температуры и условий деформации до, во время и после облучения, послужили основой при разработке специального низколегированного уранового сплава для сердечников твэлов и новых технологических процессов их изготовления.

Одновременно под его руководством был создан ряд новых коррозионно-стойких алюминиевых сплавов для оболочек, разработаны современные методы герметизации твэлов и аппаратура контроля их качества. По инициативе Андрея Анатольевича были выполнены сложные реакторные испытания, позволившие определить допустимые параметры эксплуатации твэлов в проточных и двухцелевых (энергетических) реакторах. Все эти исследования и технологические разработки выполнялись не только во многих лабораториях института, но и в тесном контакте с сотрудниками других институтов и предприятий.

Андрей Анатольевич непосредственно руководил выполнением исследовательских, технологических и внедренческих разработок коллективами института, предприятий, производящих твэлы, персоналом реакторов, что способствовало успешному решению проблемы живучести и обеспечило многолетнюю (более 30 лет) устойчивую работу промышленных уран-графитовых реакторов на высоких эксплуатационных параметрах. Под руководством Андрея Анатольевича началась разработка конструкций, материалов и технологий производства твэлов для реакторов АЭС и транспортных установок. Ему принадлежит идея использования в качестве топлива для быстрых реакторов диоксида урана.

Правильность такого выбора была подтверждена практикой, и впоследствии все зарубежные реакторы также были переведены на оксидное топливо. Под его руководством были разработаны специальные стали и алюминиевые сплавы и технология производства изделий из этих основных конструкционных материалов атомной промышленности, а также наряду с исследованиями, проводимыми в ВИАМе под руководством Р. С. Амбарцумяна, начато изучение циркония и его сплавов. В дальнейшем эти направления возглавили такие видные ученые, как чл.-корр. АН СССР А. С. Займовский и А. Г. Самойлов, док. техн. наук Н. П. Агапова, академик Ф. Г. Решетников, док. техн. наук И. С. Головнин.

Обширные знания в области металловедения делящихся и конструкционных материалов и воздействия на них облучения обеспечили возможность коллективам лабораторий в кратчайшие сроки и на высоком научном уровне решать постоянно возникающие новые задачи. Так, в 50-х годах на базе результатов исследования сплавов системы уран-молибден Андрей Анатольевич предложил использовать сплав с 9 мас. % молибдена (ОМ-9) в качестве топлива первой в мире атомной электростанции, где он и применялся в виде крупки в течение многих лет. К числу таких работ относится создание сложных многокомпонентных сплавов на основе урана и плутония с заданной сложной совокупностью свойств и промышленной технологии изготовления из них ответственных изделий оборонной техники. 4.4. Андрей Анатольевич Бочвар как личность Андрей Анатольевич отличался колоссальной эрудицией, чему способствовало знание иностранных языков, четкостью в постановке исследований, огромным трудолюбием, сильной волей и ответственностью при принятии решений. Его научное руководство и постоянный личный анализ новых экспериментальных результатов во многом определяли формирование важнейших научных направлений и способствовали накоплению научных данных, получивших признание и высокую оценку зарубежных специалистов. Он хорошо знал производство, так как постоянно бывал на предприятиях и скрупулезно вникал в детали технологических процессов. В отношениях с сотрудниками Андрей Анатольевич всегда сохранял определённую дистанцию, но был внимателен к трудностям в работе и личным нуждам и всегда помогал и словом, и делом. Все испытывали к нему огромное уважение, к каждой встрече тщательно готовились, а его научный авторитет был непререкаем не только в институте, но и у руководителей отрасли. Очень тепло и с большим уважением относились к Андрею Анатольевичу Б. П. Ванников, А. П. Завенягин, И. В. Курчатов, Ю. Б. Харитон, А. П. Александров, Е. П. Славский.

Особое внимание Андрей Анатольевич уделял подготовке научных кадров как в институте, так и на предприятиях.

Видные ученые систематически читали лекции по различным отраслям знаний.

Андрей Анатольевич также не раз выступал с лекциями и научными докладами. Его опыт преподавателя, манера чётко, чрезвычайно сжато и просто излагать материал делали его выступления очень интересными и запоминающимися.

Прекрасной школой были 'оперативки', которые Андрей Анатольевич многие годы регулярно проводил по пятницам с участием ведущих ученых и молодых специалистов. На этих совещаниях детально обсуждались результаты исследований, теоретические выводы, практические предложения и определялись направления дальнейших работ.

Большое значение имели также отраслевые конференции и совещания, подготовка к которым всегда была в поле зрения Андрея Анатольевича.

Андрей Анатольевич создал в институте атмосферу требовательности, которая сочеталась с большим доверием к сотрудникам, что способствовало развитию творческой инициативы и активности. За годы, когда институт возглавлял Андрей Анатольевич, многие сотрудники защитили кандидатские и докторские диссертации, стали преподавателями ВУЗов, авторами многих научных статей и книг.

Однако защита диссертаций никогда не была самоцелью, а являлась естественным итогом напряжённой научной работы.

Андрей Анатольевич всегда придавал большое значение самой работе над диссертацией связанной с глубокой проработкой материала, анализом результатов собственных и зарубежных исследований, определением направлении дальнейших исследовании, и категорически возражал против защит по докладам и аннотациям.

Большое внимание Андрей Анатольевич уделял формированию научных коллективов на предприятиях и подготовке для них специалистов.

Многие, ставшие впоследствии ведущими специалистами и руководителями предприятий отрасли, первый опыт работы с радиоактивными материалами получили во время стажировки в нашем институте.

Встреча с А. А. Бочваром, замечательным человеком и ученым, во многом определила счастливую творческую судьбу многих молодых сотрудников. А. А. Бочвар создал один из крупнейших научно-исследовательских институтов страны и школу высококвалифицированных специалистов в области материаловедения делящихся и конструкционных материалов и технологии промышленного производства ответственных изделий атомной техники.

Одновременно были успешно решены сложные научные и практические задачи переработки облученных материалов. А. А. Бочвар возглавлял институт в течение 32 лет вплоть до своей кончины 18 сентября 1984 года. Это были самые плодотворные и самые напряженные годы, когда институт стал ведущим научным центром отрасли. Его сотрудники внесли значительный вклад в мировую науку, создание ядерной энергетики и укрепление обороноспособности страны.

Деятельность института и личный вклад А. А. Бочвара в становление и развитие отечественной атомной промышленности и науки высоко оценило Правительство.

Институт был награждён высшей наградой - орденом Ленина.

Многие сотрудники награждены орденами и медалями, являются лауреатами Ленинских и Государственных премий.

Андрею Анатольевичу дважды было присвоено звание Героя Социалистического Труда, он награжден четырьмя орденами Ленина, другими орденами и медалями, был лауреатом Ленинской премии и четырёх Государственных премий.

Выдающийся ученый с мировым именем был скромным, интеллигентным человеком, великим тружеником и истинным патриотом своей родины. После смерти Андрея Анатольевича решением Правительства институту было присвоено его имя, и он стал называться Всесоюзный ордена Ленина научно-исследовательский институт неорганических материалов имени академика А. А. Бочвара.

Вблизи института установлен бюст и одна из улиц Москвы названа его именем. РАЗДЕЛ II 1. РОЛЬ ОТКРЫТИЙ ОТЕЧЕСТВЕННЫХ УЧЕНЫХ В РАЗВИТИИ ЭКОНОМИКИ РОССИИ

Ученый Открытия Экономическая значимость
Д.К. Чернов В работе «О выгорании каналов в стальных орудиях» создал свою теорию, которая объясняет происхождение процесса разгара, указывает его признаки и возможные средства противодействия этому разрушительному процессу. Работа получила признание в артиллерийских кругах и была переведена на многие европейские языки.

Советские заводы начали изготавливать артиллерийские орудия и снаряды согласно этой работе.

Работа «О наступлении возможности механического воздухоплавания без помощи баллона»,попытка сооружения геликоптера. Развитие и усовершенствование самолетостроения.
Открыл критические температуры («точки Чернова»), при которых в стали в результате ее нагревания или охлаждения в твердом состоянии происходят фазовые превращения, существенно изменяющие структуру и свойства металла; графически изобразил влияние углерода на положение критических точек, создав первый набросок очертания важнейших линий диаграммы состояния «железо-углерод». Результаты этого исследования положили начало современной металлографии.

оценка стоимости патента в Смоленске
залив квартиры независимая экспертиза в Курске
оценка ценных бумаг в Твери