Гамма-излучениеВозбужденное состояние Ширина линий гамма-излучений чрезвычайно мала (~10 -2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося 0 - мезона возникает гамма-излучение с энергией ~ 70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма –излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гаммаизлучение с максимальной энергией до нескольких десятков Гэв. В межзвёзном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого длинноволнового, электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение. Аналогичное явление может иметь место в земных условиях при столновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в -квант. Таким образом , можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии. Гамма-излучение обладает большой проникающей способностью, т.е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образавание пар электрон-позитрон. При фотоэффекте происходит поглощение -кванта одним из электронов атома, причём энергия -кванта преобразуется ( за вычетом энергии связи электрона в атоме ) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии -квантов ( 100 кэв ) на тяжелых элементах ( Pb, U) . При комптон-эффекте происходит рассеяние -кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте -квант не исчезает, а лишь изменяет энергию ( длинну волны ) и направление распрастранения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым ). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1см 3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышвют энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 Мэв. В случае Al комптон-эффект преобладает при гораздо меньших энергиях. Если жнергия -кванта превышает 1,02 Мэв, становится возможным процесс образования электрон-позитроновых пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом h . Поэтому при h ~ 10 Мэв основным процессом в любом веществе оказывается образование пар. Иногда вводят массовый коэффициент поглощения, равный отношению 0 к плотности поглотителя. Экспоненциальный закон ослабления гамма-излучения справедлив для узкого направления пучка гамма-лучей, когда любой процесс, как поглощения, так и рассеяния, выводит гамма-излучение из состава первичного пучка. Однако при высоких энергиях процесс прохождения гамма-излучения через вещество значительно усложняется. Вторичные электроны и позитроны обладают большой энергией и поэтому могут, в свою очередь, создавать гамма-излучение благодаря процессам торможения и аннигиляциии. Таким образом в веществе возникает ряд чередующихся поколений вторичного гамма-излучения, электронов и позитронов, то есть происходит развитие каскадного ливня. Число вторичных частиц в таком ливне сначала возрастает с толщиной, достигая максимума. Однако затем процессы поглощения начинают преобладать над процессами размножения частиц и ливень затухает. Способность гамма-излучения развивать ливни зависит от соотношения между его энергией и так называемой критической энергией, после которой ливень в данном веществе практически теряет способность развиваться. Для изменения энергии гамма-излучения в эксперементальной физике применяются гамма-спектрометры различных типов, основанные большей частью на измерении энергии вторичных электронов. Основные типы спектрометров гамма-излучения: магнитные, сцинтиляционные, полупроводниковые, кристал-дифракционные. Изучение спектров ядерных гамма-излучений дает важную информацию о структуре ядер. Наблюдение эффектов, связанных с влиянием внешней среды на свойства ядерного гамма-излучения, используется для изучения свойств твёрдых тел. Гамма-излучение находит применение в технике, например для обнаружения дефектов в металлических деталях – гамма-дефектоскопия. В радиационной химии гамма-излучение применяется для инициирования химических превращений, например процессов полимеризации. Гамма-излучение используется в пищевой промышленности для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители. Действие на организм гамма-излучения подобно действию других видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния гамма-излучения зависит от энергии -квантов и пространственных особенностей облучения, например, внешнее или внутреннее. Относительная биологическая эффективность гамма-излучения составляет 0,7-0,9. В производственных условиях (хроническое воздействие в малых дозах) относительная биологическая эффективность гамма-излучения принята равной 1. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков ) и растений. Современные возможности лучевой теропии расширились в первую очередь за счёт средств и методов дистанционной гамма-теропии. Успехи дистанционной гамма-теропии достигнуты в результате большой работы в области использования мощных искусственных радиоактивных источников гамма-излучения (кобальт-60, цезий-137), а также новых гамма-препаратов. Большое значение дистанционной гамма-теропии объясняется также сравнительной доступностью и удобствами использования гамма-аппаратов. Последние, так же как и рентгеновские, конструируют для статического и подвижного облучения. С помощью подвижного облучения стремятся создать большую дозу в опухоли при рассредоточенном облучении здоровых тканей. Осуществлены конструктивные усовершенствования гамма-аппаратов, направленные на уменьшение полутени, улучшение гомогенизации полей, использование фильтров жалюзи и поиски дополнительных возможностей защиты. Использование ядерных излучений в растениеводстве открыло новые, широкие возможности для изменения обмена веществ у сельскохозяйственных растений, повышение их урожайности, ускорения развития и улучшения качества. В результате первых исследований радиобиологов было установлено, что ионизирующая радиация – мощный фактор воздействия на рост, развитие и обмен веществ живых организмов. Под влиянием гамма-облучения у растений, животных или микроорганизмов меняется слаженный обмен веществ, ускоряется или замедляется (в зависимости от дозы) течение физиологических процессов, наблюдаются сдвиги в росте, развитии, формировании урожая. Следует особо отметить, что при гамма-облучении в семена не попадают радиоактивные вещества. Облученные семена, как и выращенный из них урожай, нерадиоактивны. Оптимальные дозы облучения только ускоряют нормальные процессы, происходящие в растении, и поэтому совершенно необоснованны какие-либо опасения и предостережения против использования в пищу урожая, полученного из семян, подвергавшихся предпосевному облучению. Ионизирующие излучения стали использовать для повышения сроков хранения сельскохозяйственных продуктов и для уничтожения различных насекомых-вредителей. |
экспертиза мотоцикла в Белгороде
оценка патента в Москве
Педагогика
Литература, Лингвистика
Технология
Микроэкономика, экономика предприятия, предпринимательство
Конституционное (государственное) право России
Гражданская оборона
География, Экономическая география
Теория государства и права
Социология
Гражданское право
История политических и правовых учений
Бухгалтерский учет
Маркетинг, товароведение, реклама
Биология
Техника
Политология, Политистория
Психология, Общение, Человек
Государственное регулирование, Таможня, Налоги
Экскурсии и туризм
Химия
Архитектура
Охрана природы, Экология, Природопользование
Теория систем управления
Компьютеры и периферийные устройства
Искусство
Экономическая теория, политэкономия, макроэкономика
Философия
Культурология
Транспорт
Ветеринария
Медицина
Астрономия, Авиация, Космонавтика
Сельское хозяйство
Менеджмент (Теория управления и организации)
Криминалистика и криминология
Уголовное право
Трудовое право
Радиоэлектроника
Международные экономические и валютно-кредитные отношения
Банковское дело и кредитование
Религия
Программное обеспечение
История
Материаловедение
Административное право
Военное дело
Физика
Физкультура и Спорт
Здоровье
Музыка
История отечественного государства и права
Конституционное (государственное) право зарубежных стран
История экономических учений
Право
Биржевое дело
История государства и права зарубежных стран
Историческая личность
Компьютерные сети
Программирование, Базы данных
Страховое право
Геодезия, геология
Пищевые продукты
Таможенное право
Металлургия
Ценные бумаги
Юридическая психология
Международное частное право
Международное право
Жилищное право
Экологическое право
Математика
Налоговое право
Правоохранительные органы
Экономика и Финансы
Семейное право
Компьютеры, Программирование
Разное
Гражданское процессуальное право
Астрономия
Российское предпринимательское право
Земельное право
Иностранные языки
Уголовное и уголовно-исполнительное право
Подобные работы
Термопара
echo "Каждому методу определения температуры, в основе которого лежит зависимость между каким-либо внешним параметром системы и температурой, соответствует определенная последовательность значений пар
Исследования микромира и микрокосмоса
echo "Почему же так важно исследовать твёрдые тела? Огромную роль, конечно, играет сдесь практическая деятельность человека. Твёрдые тела - это металлы и диэлектрики, без которых немыслима электротехн
Все формулы по физике на А4
echo "Опережение колебаний I от U на /2. Ом (с -1 , Ф); А (В, Ом) А (А, рад/с, с; В, Ф, рад/с, рад/с, с) "; echo ''; echo " Индуктивное сопротивление и закон Ома для катушки. Отставание колеб
Люминесцентный анализ
echo "Помимо люминесценции известны и другие свечения, которые, однако, существенно отличаются от нее, например, температурное излучение, свечения, наблюдаемые при быстром движении электрических заряд
СВЧ диагностика газового разряда
echo "Актуальность проблемы 3 Глава 1. Постановка исследований 4 1. 1 . Свойства газоразрядной плазмы 4 1 .2. Методы исследования газоразрядной плазмы 7 1.3. Волноводы
Гамма-излучение
echo "Возбужденное состояние "; echo ''; echo " "; echo ''; echo " Е2 "; echo ''; echo " "; echo ''; echo " h "; echo ''; echo " Основное состояние ядра Е1 Испускание ядром -кванта не влечет з
Современные физические технологии: микроэлектронная, наноэлектронная и лазерная
echo "Реферат по предмету: «Концепции современного естествознания» тема: «Современные физические технологии: микроэлектронная, наноэлектронная и лазерная». Калуга 2006 г. Содержание. 1. 2. 3. Наноэле
Развитие представлений о природе теплоты
echo "Широко поддерживаемой среди физиков того времени была теория теплорода . Румфорд сделал крупный шаг вперед, предположив, что теплота — это некое свойство самого вещества, а не что-то добавляемое